Research article

Asymptotic analysis of high frequency modes for thin elastic plates

  • Received: 07 March 2023 Revised: 15 May 2023 Accepted: 21 May 2023 Published: 02 June 2023
  • MSC : 35E20, 35C20, 74B05, 74K20, 74G10

  • In this paper, we show that the high frequency modes of a thin clamped plate and the associated eigenfunctions converge, as the thickness of the plate goes to zero, to the eigenvalues and the eigenfunctions of a two-dimensional eigenvalue problem associated to the stretching displacements of the plate.

    Citation: Nabil Kerdid. Asymptotic analysis of high frequency modes for thin elastic plates[J]. AIMS Mathematics, 2023, 8(8): 18618-18630. doi: 10.3934/math.2023948

    Related Papers:

  • In this paper, we show that the high frequency modes of a thin clamped plate and the associated eigenfunctions converge, as the thickness of the plate goes to zero, to the eigenvalues and the eigenfunctions of a two-dimensional eigenvalue problem associated to the stretching displacements of the plate.



    加载中


    [1] P. G. Ciarlet, P. Destuynder, A justification of the two-dimensional linear plate model, J. Mec., 18 (1979), 315–344.
    [2] P. G. Ciarlet, H. Le Dret, R. Nzengwa, Junctions between three-dimensional and two-dimensional linear elastic structures, J. Math. Pures Appl., 68 (1989), 261–295.
    [3] H. Le Dret, Folded plates revisited, Comput. Mech., 5 (1989), 345–365. http://dx.doi.org/10.1007/BF01047051 doi: 10.1007/BF01047051
    [4] H. Le Dret, Modeling of a folded plate, Comput. Mech., 5 (1990), 401–416. https://doi.org/10.1007/BF01113445 doi: 10.1007/BF01113445
    [5] H. Le Dret, Modeling of the junction between two rods, J. Math. Pure Appl., 68 (1989), 365–397.
    [6] L. Trabucho, J. M. Viaño, Existence and characterization of higher-order terms in an asymptotic expansion method for linearized elastic beams, Asymptotic Anal., 2 (1989), 223–255. https://doi.org/10.3233/ASY-1989-2303 doi: 10.3233/ASY-1989-2303
    [7] P. G. Ciarlet, S. Kesavan, Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory, Comput. Methods Appl. Mech. Eng., 26 (1981), 0045–7825. http://dx.doi.org/10.1016/0045-7825(81)90091-8 doi: 10.1016/0045-7825(81)90091-8
    [8] H. Le Dret, Vibrations of a folded plate, ESAIM: M2AN, 24 (1990), 501–521. https://doi.org/10.1051/m2an/1990240405011 doi: 10.1051/m2an/1990240405011
    [9] F. Bourquin, P. G. Ciarlet, Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal., 87 (1989), 392–427. https://doi.org/10.1016/0022-1236(89)90017-7 doi: 10.1016/0022-1236(89)90017-7
    [10] V. Lods, Modeling and justification of an eigenvalue problem for a plate inserted in a three-dimensional support, ESAIM: M2AN, 30 (1996), 413–444. http://dx.doi.org/10.1051/m2an/1996300404131 doi: 10.1051/m2an/1996300404131
    [11] N. Kerdid, Asymptotic behavior of the eigenvalue problem in a thin linearly elastic clamped rod when its thickness tends to zero, C. R. Acad. Sci. Ser. I: Math., 316 (1993), 755–758.
    [12] N. Kerdid, Modeling the vibrations of a multi-rod structure, ESAIM: M2AN, 31 (1997), 891–925. https://doi.org/10.1051/m2an/1997310708911 doi: 10.1051/m2an/1997310708911
    [13] S. Jimbo, A. Rodríguez Mulet, Asymptotic behavior of eigenfrequencies of a thin elastic rod with non-uniform cross-section, J. Math. Soc. Japan, 72 (2020), 119–154. https://doi.org/10.2969/jmsj/81198119 doi: 10.2969/jmsj/81198119
    [14] S. Jimbo, E. Ushikoshi, H. Yoshihara, Asymptotic behavior of the eigenfrequencies of a thin elastic rod with non-uniform cross-section of extremely oblate shape, Calc. Var. Partial Differ. Equ., 62 (2022), 11. https://doi.org/10.1007/s00526-022-02325-1 doi: 10.1007/s00526-022-02325-1
    [15] M. Serpilli, S. Lenci, Asymptotic modelling of the linear dynamics of laminated beams, Int. J. Solids Struct., 49 (2012), 1147–1157. http://dx.doi.org/10.1016/j.ijsolstr.2012.01.012 doi: 10.1016/j.ijsolstr.2012.01.012
    [16] J. Tamba$\tilde{{\rm{c}}}$a, One-dimensional approximations of the eigenvalue problem of curved rods, Math. Methods Appl. Sci., 24 (2001), 927–948. https://doi.org/10.1002/mma.249 doi: 10.1002/mma.249
    [17] A. Gaudiello, D. Gómez, M. E. Pérez-Martínez, Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure, J. Math. Pures Appl., 134 (2020), 299–327. http://dx.doi.org/10.1016/j.matpur.2019.06.005 doi: 10.1016/j.matpur.2019.06.005
    [18] H. Irago, N. Kerdid, J. M. Viaño, Asymptotic analysis of high frequency modes in thin rods, C. R. Acad. Sci. Ser. I: Math., 326 (1998), 1255–1260. https://doi.org/10.1016/S0764-4442(98)80238-3 doi: 10.1016/S0764-4442(98)80238-3
    [19] H. Irago, N. Kerdid, J. M. Viaño, Asymptotic analysis of torsional and stretching modes of thin rods, Quart. Appl. Math., 58 (2000), 495–510. http://dx.doi.org/10.1090/QAM/1770651 doi: 10.1090/QAM/1770651
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(939) PDF downloads(37) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog