In this study, we construct the spaces of $ q $-difference sequences of order $ m $. We obtain some inclusion relations, topological properties, Schauder basis and alpha, beta and gamma duals of the newly defined spaces. We characterize certain matrix classes from the newly defined spaces to any one of the spaces $ c_0, c, \ell_\infty $ and $ \ell_p $.
Citation: Hacer Bilgin Ellidokuzoğlu, Serkan Demiriz. On some generalized $ q $-difference sequence spaces[J]. AIMS Mathematics, 2023, 8(8): 18607-18617. doi: 10.3934/math.2023947
In this study, we construct the spaces of $ q $-difference sequences of order $ m $. We obtain some inclusion relations, topological properties, Schauder basis and alpha, beta and gamma duals of the newly defined spaces. We characterize certain matrix classes from the newly defined spaces to any one of the spaces $ c_0, c, \ell_\infty $ and $ \ell_p $.
[1] | J. Boos, F. P. Cass, Classical and modern methods in summability, Clarendon Press, 2000. |
[2] | M. Mursaleen, F. Başar, Sequence spaces, Topics in Modern Summability Theory, CRC Press, 2020. https://doi.org/10.1201/9781003015116 |
[3] | C. Aydin, F. Başar, On the new sequence spaces which include the spaces $c_0$ and $c$, Hokkaido Math. J., 33 (2004), 383–398. https://doi.org/10.14492/hokmj/1285766172 doi: 10.14492/hokmj/1285766172 |
[4] | C. Aydin, F. Başar, Some new paranormed sequence spaces, Inf. Sci., 160 (2004), 27–40. https://doi.org/10.1016/j.ins.2003.07.009 doi: 10.1016/j.ins.2003.07.009 |
[5] | M. Şengönül, F. Başar, Some new Cesáro sequence spaces of non-absolute type which include the spaces $c_0$ and $c$, Soochow J. Math., 31 (2005), 107–119. |
[6] | M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299–1309. https://doi.org/10.1016/j.camwa.2010.06.010 doi: 10.1016/j.camwa.2010.06.010 |
[7] | S. Demiriz, C. Çakan, On some new paranormed Euler sequence spaces and Euler core, Acta Math. Sin.-English Ser., 26 (2010), 1207–1222. https://doi.org/10.1007/s10114-010-8334-x doi: 10.1007/s10114-010-8334-x |
[8] | V. Kaç, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[9] | G. Bennett, An inequality for Hausdorff means, Houston J. Math., 25 (1999), 709–744. |
[10] | S. Demiriz, A. Sahin, $q$-Cesàro sequence spaces derived by $q$-analogues, Adv. Math., 5 (2016), 97–110. |
[11] | T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of $q$-Cesàro matrix in $\ell_p$ space and the associated operator ideal, J. Math. Anal. Appl., 493 (2021), 124453. https://doi.org/10.1016/j.jmaa.2020.124453 doi: 10.1016/j.jmaa.2020.124453 |
[12] | T. Yaying, B. Hazarika, M. Mursaleen, On generalized $\left(p, q\right)$-Euler matrix and associated sequence spaces, J. Funct. Spaces, 2021 (2021), 8899960. https://doi.org/10.1155/2021/8899960 doi: 10.1155/2021/8899960 |
[13] | T. Yaying, M. I. Kara, B. Hazarika, E. E. Kara, A study on $q$-analogue of Catalan sequence spaces, Filomat, 37 (2023), 839–850. https://doi.org/10.2298/FIL2303839Y doi: 10.2298/FIL2303839Y |
[14] | A. Alotaibi, T. Yaying, S. A. Mohiuddine, Sequence spaces and spectrum of $q$-difference operator of second order, Symmetry, 14 (2022), 1155. https://doi.org/10.3390/sym14061155 doi: 10.3390/sym14061155 |
[15] | T. Yaying, B. Hazarika, S. Mohiuddine, Domain of Padovan $q$-difference matrix in sequence spaces $\ell_p$ and $\ell_\infty$, Filomat, 36 (2022), 905–919. https://doi.org/10.2298/FIL2203905Y doi: 10.2298/FIL2203905Y |
[16] | T. Yaying, B. Hazarika, B. Chandra Tripathy, M. Mursaleen, The spectrum of second order quantum difference operator, Symmetry, 14 (2022), 557. https://doi.org/10.3390/sym14030557 doi: 10.3390/sym14030557 |
[17] | T. Yaying, B. Hazarika, S. A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-Eur. J. Math., 14 (2021), 2150095. https://doi.org/10.1142/S1793557121500959 doi: 10.1142/S1793557121500959 |
[18] | K. Raj, S. A. Mohiuddine, S. Jasrotia, Characterization of summing operators in multiplier spaces of deferred Nörlund summability, Positivity, 27 (2023), 9. https://doi.org/10.1007/s11117-022-00961-7 doi: 10.1007/s11117-022-00961-7 |
[19] | H. Kizmaz, On certain sequence spaces, Can. Math. Bull., 24 (1981), 169–176. https://doi.org/10.4153/CMB-1981-027-5 doi: 10.4153/CMB-1981-027-5 |
[20] | R. Çolak, E. Mikail, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26 (1997), 483–492. https://doi.org/10.14492/hokmj/1351258261 doi: 10.14492/hokmj/1351258261 |
[21] | M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21 (1995), 377–386. |
[22] | M. Et, F. Nuray, $\delta^m$-statistical convergence, Indian J. Pure Appl. Math., 36 (2001), 961–969. |
[23] | M. Et, On some topological properties of generalized difference sequence spaces, Int. J. Math. Math. Sci., 24 (2000), 716581. https://doi.org/10.1155/S0161171200002325 doi: 10.1155/S0161171200002325 |
[24] | B. Altay, On the space of $p$-summable difference sequences of order $m, (1\leq p < \infty)$, Stud. Sci. Math. Hung., 43 (2006), 387–402. https://doi.org/10.1556/sscmath.43.2006.4.1 doi: 10.1556/sscmath.43.2006.4.1 |
[25] | A. Wilansky, Summability through functional analysis, Vol. 85, Elsevier, 2000. |
[26] | M. Stieglitz, H. Tietz, Matrixtransformationen von folgenräumen eine ergebnisübersicht, Math. Z., 154 (1977), 1–16. https://doi.org/10.1007/BF01215107 doi: 10.1007/BF01215107 |