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1. Introduction

A sequence space is defined as a vector subspace of ω, where ω is the set of all K-valued sequences,
where K denotes R or C. Some of the well-known examples of classical sequence space are the set
of all bounded sequences `∞, null sequences c0, convergent sequences c and p-absolutely summable
sequences `p, where 1 ≤ p < ∞. A BK-space is a Banach sequence space with continuous coordinates.
The space `p is BK-space accompanied by the norm ‖u‖`p = (

∑
k |uk|

p)1/p.
Set A = (ank)N0×N0 be an infinite matrix with real or complex elements. We will denote by An =

(ank) the sequence in the nth row ofA for every n ∈ N ∪ {0}. For x = (xk) ∈ ω, theA-transform of x is
defined as the sequenceAx = ((Ax)n)∞n=0, where

(Ax)n =
∑

k

ankxk

provided the series on the right side converges for each n ∈ N. Furthermore, the sequence x is called
A−summable to the number l if (Ax)n → l, as n → ∞. In that case, we write x → l(A) where l is
called theA−limit of x.

Define X,Y be two sequence spaces andA be an infinite matrix. Then, we callA a matrix mapping
from X into Y , if Ax exists and is in Y for every sequence x = (xk) ∈ X. The class of all infinite
matrices that map X into Y will be denoted by (X,Y).
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For a sequence space E, we call EA the matrix domain of an infinite matrixA if

EA = {x = (xk) ∈ ω : Ax ∈ E} . (1.1)

Here EA is a sequence space. A matrix A is called conservative if Ax ∈ c for all x ∈ c. If in addition
A− lim x = lim x for all x ∈ c, ThenA is called a regular matrix.

Several authors in the literature have constructed sequence spaces using the domain of some special
matrices. For instance, one may refer to these nice papers and summability books [1–7].

2. q-sequence spaces

This paper focuses on the q-analogue of difference matrices and seeks to obtain new results related
to the q-analogue.

We start with q-integer definition generated by [8]. A q-integer is defined by

[u]q =

{ ∑u−1
k=0 qk, (u = 1, 2, 3, ...),

0, (u = 0).

It is to be expected that, when q → 1− then [u]q → u. We denote [u]q briefly by [u]. The q-binomial
coefficient is defined by [

u
v

]
=

{ [u]!
[v]![u−v]! , 0 ≤ v ≤ u,
0, otherwise,

(2.1)

where q-factorial [u]! of u is given by

[u]! =


u∏

k=1

[k], (u = 1, 2, 3, ...),

1, (u = 0).

From the definition of q-binomial coefficients, we have

(x + r)i
q =

i∑
j=0

[
i
j

]
q( j

2)xi− jr j. (2.2)

The last formula is called Gauss’s q-binomial formula.
Let us now introduce the q-difference matrix definition, following [9]. We first define q-operator by

∆qu = (u0 − u1, q(u1 − u2), q2(u2 − u3), q3(u3 − u4)...) (2.3)

where u = (u0, u1, u2, ...). This operator leads directly to the q-binomial coefficients via iteration,
∆m

q = ∆q(∆m−1
q ):

(∆m
q u)i, j = qm j

m∑
i= j

(−1)i− jq(i− j
2 )

[
m

i − j

]
ui = qm j

m∑
i=0

(−1)iq( i
2)
[
m
i

]
ui+ j. (2.4)

The q-difference matrix ∆m
q =

((
δm

q

)
i j

)
N0×N0

is given by
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(δm
q )i, j = (−1)i− jq(i− j

2 )
[

m
i − j

]
and this matrix can be explicitly represented as

∆m
q =



1 0 0 0 0 · · ·

−[m] 1 0 0 0 · · ·

q
[

m
2

]
−[m] 1 0 0 · · ·

−q3
[

m
3

]
q
[

m
2

]
−[m] 1 0 · · ·

...
...

...
...

...



.

Then, the inverse (∆m
q )−1 = (δm

q )−1
i, j of ∆m

q is obviously given by

(δm
q )−1

i, j = (δm
1
q
)i, j = (−1)i− jq(i− j)(i− j−m)−(i− j

2 )
[

m
i − j

]
=

[
m + j − i − 1

j − i

]
.

The primary purpose of this paper is to define a new sequence space using the ∆m
q operator and to

examine this sequence space.

3. q-difference sequence spaces

The q-analogue of Cesàro sequence spaces were defined by Demiriz and Şahin [10] and Yaying
et al. [11]. Then, Yaying et al. [12, 13] studied over (p′, q)-analogue of Euler sequence spaces and q-
analogue of Catalan sequence spaces. Recently, Alotaibi et al. [14] and Yaying et al. [15,16] introduced
q-difference sequence spaces of the second order. For other studies on q-analogue of sequence spaces,
you can refer to the references [17, 18].

Let D = `∞, c0, c. The concept of a difference sequence space was introduced by Kizmaz [19], who
studied the difference sequence spaces D(∆), where

D(∆) = {u = (uk) ∈ w : ∆u ∈ D}.

In the past, several authors studied matrix transformations on sequence spaces that are the matrix
domain of the difference operator, or of the matrices of some classical methods of summability in
different sequence spaces, for instance we refer to [20–24] and references therein.

Recently, Altay [24] introduced the spaces D(∆m) as follows:

D(∆m) = {u = (uk) ∈ ω : {(∆mu)k}
∞

k=0 ∈ D},

where m ∈ N and (∆mx)k =
{
(∆ ◦ ∆m−1)x

}∞
k=0

for all k ∈ N ∪ {0}.
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In this section, we introduce the spaces `p(∆m
q ) as a generalization spaces `p(∆m). Now let’s give the

sequence space `p(∆m
q ) as the set of all sequences such that ∆m

q -transforms of them are in the space `p,
that is

`p(∆m
q ) =

u = (u j) ∈ ω :
∑

j

∣∣∣∣∣∣∣qm j
m∑

i=0

(−1)iq( i
2)
[
m
i

]
ui+ j

∣∣∣∣∣∣∣
p

< ∞

 ,
where m ∈ N.

It is easy to check that when q = 1, the sequence space `p(∆m
q ) reduces to the ordinary difference

sequence space `p(∆m) as studied by Altay [24].
In the notation of (1.1), we can redefine the space `p(∆m

q ) by

`p(∆m
q ) = {`p}∆m

q . (3.1)

Define the sequence v =
(
v j

)∞
j=0

, which will be frequently used, as the ∆m
q -transform of a sequence

u = (u j), i.e.,

v j = qm j
j∑

i=0

(−1)iq( i
2)
[
m
i

]
ui+ j; ( j ∈ N ∪ {0}) . (3.2)

Also the sequence u =
(
u j

)∞
j=0

,

u j =

j∑
i=0

[
m + j − i − 1

j − i

]
vi; ( j ∈ N ∪ {0}) . (3.3)

Wilansky’s Theorem 4.3.12 of [25, p.63] states that X is a BK-space and Λ is a triangle, then XΛ is
also a BK-space endowed with the norm ‖x‖XΛ

= ‖Λx‖X. It is easily seen that the `p(∆m
q ) set becomes a

linear space with the coordinatewise addition and scalar multiplication, which is a BK-space with the
norm ‖u‖`p(∆m

q ) =
∥∥∥∆m

q u
∥∥∥
`p

.

Theorem 3.1. The `p(∆m
q ) sequence space is linearly isomorphic to `p.

Proof. The transformation Ψ can be defined with (3.2) notation from `p(∆m
q ) to `p by u 7→ v = Ψu.

Clearly, Ψ is a linear bijection and norm preserving. �

Theorem 3.2. The space `p(∆m
q ) is non-absolute type.

Proof. Taking v = (vk) = (−1)k, it is clear from (2.3) that

∆qv =
{
2,−2q, 2q2,−2q3, ...

}
= 2

{
1,−q, q2,−q3, ...

}
,

∆2
qv = 2

{
1 + q,−q2(1 + q), q4(1 + q), ...

}
= 2(1 + q)

{
1,−q2, q4, ...

}
,

∆3
qv = 2(1 + q)

{
1 + q2,−q3(1 + q2), q6(1 + q2), ...

}
= 2(1 + q)(1 + q2)

{
1,−q3, q6, ...

}
,

and finally

∆m
q v = 2(1 + q)(1 + q2)(1 + q3)...(1 + qm−1)

{
1,−qm, q2m, ...

}
.

AIMS Mathematics Volume 8, Issue 8, 18607–18617.



18611

Therefore (
∆m

q v
)

k
= 2 (1 + q)m−1

q (−1)kqmk.

But

∆q|v| =
{
0, 0q, 0q2, 0q3, ...

}
= {0, 0, 0, 0, ...}

then

∆m
q |v| = {0, 0, 0, ...} .

So
‖v‖`p(∆m

q ) , ‖|v|‖`p(∆m
q )

where |v| = (|vk|)∞k=0. �

Now, we discuss some inclusion relations concerning with the space `p(∆m
q ).

Theorem 3.3. Let 0 < q < 1. The inclusion `p ( `p(∆m
q ) holds.

Proof. It is fairly easy to see that the space `p ⊂ `p(∆m
q ). To prove the strictness part, we consider the

sequence (rk) = (k) for all k ∈ N∪ {0}. Then, r is not a sequence in `p. On the other hand from Eq (2.3)

∆m
q r =

(
−(1 − q)(1 − q2)(1 − q3) · · · (1 − qm−1)qmk

)∞
k=0

=
(
−(1 − q)m−1

q qmk
)∞

k=0
,

then ∑
k

∣∣∣(1 − q)m−1
q qmk

∣∣∣p < ∞.
Since it is convergent, this means that ∆m

q r ∈ `p and as a result r ∈ `p(∆m
q ). Hence, `p ( `p(∆m

q )
holds. �

A sequence Schauder basis for a linear metric space X is a sequence (uk) ⊂ X with the property that
for every u ∈ X, there exists a unique sequence (αk) of scalars such that∥∥∥∥∥∥∥u −

n∑
k=1

αkuk

∥∥∥∥∥∥∥→ 0, (n→ ∞).

If we take into consideration the fact that the matrix domain XA of a normed sequence space X has
a basis if and only if X has a basis wheneverA = (ank)N0×N0 is a triangle. Then, we have:

Corollary 3.4. Let 1 ≤ p < ∞ and β j(q) = (∆m
q a) j for all j ∈ N ∪ {0}. Define the sequence b( j)(q) =(

b( j)
i (q)

)∞
i=0

of the elements of the space `p(∆m
q ) for all fixed j ∈ N ∪ {0} by

b( j)(q) =


[

m+ j−i−1
j−i

]
, 0 ≤ j < i,

0, j ≥ i.

Then, the sequence
(
b( j)

i (q)
)∞

j=0
is a Schauder basis for the space `p(∆m

q ).

It is well-known that a space which has a Schauder basis is separable, then we can give following
corollary:

Corollary 3.5. The sequence space `p(∆m
q ) for 1 ≤ p < ∞ is separable.

AIMS Mathematics Volume 8, Issue 8, 18607–18617.
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4. α-, β- and γ-duals

In this section, our next goal is to state and prove the theorems determining the α-, β- and γ-duals of
our new sequence spaces. The following will assume that p∗ is the conjugate of p, that is, p−1+p∗−1 = 1.

The α-, β- and γ-duals of a sequence spaceU are denoted by Uα,Uβ andUγ, respectively, and are
defined by

Uα = {u = (u j) ∈ w : ua = (u ja j) ∈ `1 for all a = (a j) ∈ U},
Uβ = {u = (u j) ∈ w : ua = (u ja j) ∈ cs for all a = (a j) ∈ U},
Uγ = {u = (u j) ∈ w : ua = (u ja j) ∈ bs for all a = (a j) ∈ U}.

First, let’s give the Lemmas used in the proof of the Theorems we will give in this section:

Lemma 4.1. [26]U ∈ (`p : `1) if and only if

sup
N∈F

∞∑
k=0

∣∣∣∣∣∑
n∈N

unk

∣∣∣∣∣p∗ < ∞ (1 < p ≤ ∞). (4.1)

Lemma 4.2. [26]U ∈ (`p : c) if and only if

∀k, lim
n→∞

unk exists (4.2)

and

sup
n∈N

∞∑
k=0

|unk|
p∗ < ∞. (4.3)

Theorem 4.3. Let the set cq be as follows:

cq =

u = (uk) ∈ w : sup
N∈F

∞∑
i=0

∣∣∣∣∣∣∣∑j∈N

[
m + j − i − 1

j − i

]
α j

∣∣∣∣∣∣∣
p∗

< ∞

 .
Then,

{
`p(∆m

q )
}α

= cq.

Proof. Let u =
(
u j

)∞
j=0
∈ ω. By (3.3), define the sequence u =

(
u j

)∞
j=0

,

u j =

j∑
i=0

[
m + j − i − 1

j − i

]
vi

for every j ∈ N ∪ {0}. Thus,

α ju j =

j∑
i=0

[
m + j − i − 1

j − i

]
α jvi = (Av) j, ( j ∈ N ∪ {0}); (4.4)

where the sequence A = (ai j)N0×N0 is defined by

ai j =


[

m+ j−i−1
j−i

]
α j, (0 ≤ i ≤ j)

0, (i > j)

ux = (unxn) ∈ `1 for x ∈ `p(∆m
q ) if and only if Av ∈ `1 for v ∈ `p. That is A ∈ (`p : `1). Hence, by

Lemma 4.1 from (4.1), it is concluded that
{
`p(∆m

q )
}α

= cq. �

AIMS Mathematics Volume 8, Issue 8, 18607–18617.
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Theorem 4.4. Let us considerD = (dn j) defined via a sequence a = (a j) by

dn j =


n∑

i= j

[
m+i− j−1

i− j

]
ai, (0 ≤ j ≤ n),

0, ( j > n).
(4.5)

Define the sets b1 and b2 as follows

b1 =

{
u = (u j) ∈ w : lim

n→∞
dn j = α j

}
,

b2 =

u = (u j) ∈ w : sup
n∈N

∞∑
j=0

|dn j|
p∗ < ∞

 .
Then,

(i)
{
`p(∆m

q )
}β

= b1 ∩ b2,

(ii)
{
`p(∆m

q )
}γ

= b2.

Proof. We give the proof only for the case β-dual. Consider the equation

n∑
j=0

a ju j =

n∑
j=0

 j∑
i=0

[
m + j − i − 1

j − i

]
vi

 a j =

n∑
j=0

 n∑
i= j

[
m + i − j − 1

i − j

]
ai

 v j = (Dv)n

for any n ∈ N. Then au = (a ju j) ∈ cs for u ∈ `p(∆m
q ) if and only if Dv ∈ c for v ∈ `p. That is

D ∈ (`p : c). Hence, by Lemma 4.2 from (4.2) and (4.3), it is deduced that{
`p(∆m

q )
}β

= b1 ∩ b2.

�

5. Matrix transformations

Let µ ∈ {c0, c, `∞, `p}. In this section we will characterize the spaces let
(
`p(∆m

q ) : µ
)

and
(
µ : `p(∆m

q )
)
.

Theorem 5.1. Define, for all k, n ∈ N, elements of infinity matricesU = (unk) andV = (vnk)

vnk :=
n∑

i=k

[
m + i − k − 1

i − k

]
uni. (5.1)

In this caseU ∈ (`p(∆m
q ) : µ) if and only if for all n ∈ N, (unk)∞k=0 ∈ {`p(∆m

q )}β andV ∈ (`p : µ).

Proof. Let µ be a sequence space. Then,U = (unk) andV = (vnk) satisfy the condition in (5.1). Also,
the spaces `p(∆m

q ) and `p are linearly isomorphic, as shown in Theorem 3.1.
Let U ∈ (`p(∆m

q ) : µ) and y = (yk) ∈ `p. Since (unk)∞k=0 ∈ b1 ∩ b2, we have {δnk}
∞
k=0 ∈ `p for all

n ∈ N ∪ {0}. Thus, ∆y exists and we have∑
k

vnkyk =
∑

k

unkxk

AIMS Mathematics Volume 8, Issue 8, 18607–18617.



18614

for all n ∈ N ∪ {0}.
Hence,Vy = Ux. Thus, we deduce thatV ∈ (`p : µ).
Conversely, suppose that (unk)∞k=0 ∈ {`p(∆m

q )}β for all n ∈ N∪{0},V ∈ (`p : µ) and x = (xk) ∈ `p(∆m
q ).

Then,Ux exists. Therefore, we have
∞∑

k=0

unkxk =

∞∑
k=0

 n∑
i=k

[
m + i − k − 1

i − k

]
uni

 yk (n ∈ N).

Hence,Vy = Ux. This leads us to the resultU ∈ (`p(∆m
q ) : µ). �

Theorem 5.2. LetU = (ui j) be an infinite matrix and define the matrixV = (vi j) by

vi j := qmk
m∑

i=k

(−1)i−kq(i−k
2 )

[
m

i − k

]
ui j (5.2)

for all i, j ∈ N ∪ {0} and µ be a sequence space. Then,U ∈ (µ : `p(∆m
q )) if and only ifV ∈ (µ : `p).

Proof. Let z = (zk) ∈ µ. Then,
r∑

j=0

vi jz j =

r∑
j=0

qmk
m∑

i=k

(−1)i−kq(i−k
2 )

[
m

i − k

]
ui j

 z j

= qmk
m∑

i=k

(−1)i−kq(i−k
2 )

[
m

i − k

]  r∑
j=0

ui jz j


for all i, r ∈ N ∪ {0} holds. Since r → ∞, (Vz)r =

(
∆q(Uz)

)
r

for all r ∈ N ∪ {0}. Thus, z ∈ µ holds.
Hence,Uz ∈ `p(∆m

q ) if and only ifVz ∈ `p. �

By Stieglitz and Tietz [26]

lim
k

unk = 0, for all n, (5.3)

lim
n→∞

unk = 0, for all k, (5.4)

sup
m

∑
k

∣∣∣∣∣∣∣
m∑

n=0

unk

∣∣∣∣∣∣∣
p∗

< ∞, (5.5)∑
n

unk converges, for all k, (5.6)

sup
K

∑
n

∣∣∣∣∣∣∣∑k∈K

unk

∣∣∣∣∣∣∣
p

< ∞, (5.7)

sup
K

∑
n

∣∣∣∣∣∣∣∑k∈K

(unk − un,k+1)

∣∣∣∣∣∣∣
p

< ∞, (5.8)

sup
K

∑
n

∣∣∣∣∣∣∣∑k∈K

(unk − un,k−1)

∣∣∣∣∣∣∣
p

< ∞. (5.9)

In this case, the Lemma below is obtained from these conditions.

AIMS Mathematics Volume 8, Issue 8, 18607–18617.
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Lemma 5.3. LetU = (unk) be an infinite matrix. Then,

(1) U ∈ (`p : c)⇔ (4.2) and (4.3).

(2) U ∈ (`p : c0)⇔ (4.3) and (5.4).

(3) U ∈ (`p : bs)⇔ (5.5).

(4) U ∈ (`p : cs)⇔ (5.5) and (5.6).

(5) U ∈ (c0 : `p) = (c : `p) = (`∞ : `p)⇔ (5.7).

(6) U ∈ (bs : `p)⇔ (5.3) and (5.8).

(7) U ∈ (cs : `p)⇔ (5.9).

Corollary 5.4. Let U = (unk) be an infinite matrix. Then, by Theorem 5.1, the following conditions
hold:

(i) U ∈ (`p(∆m
q ) : c0) if and only if (unk)∞k=0 ∈ {`p(∆m

q )}β for all n ∈ N∪ {0} and (4.3) and (5.4) hold with
ũnk instead of unk.

(ii) U ∈ (`p(∆m
q ) : c) if and only if (unk)∞k=0 ∈ {`p(∆m

q )}β for all n ∈ N∪ {0} and (4.2) and (4.3) hold with
ũnk instead of unk.

(iii) U ∈ (`p(∆m
q ) : `∞) if and only if (unk)∞k=0 ∈ {`p(∆m

q )}β for all n ∈ N ∪ {0} and (4.3) holds with ũnk

instead of unk.

(iv) U ∈ (`p(∆m
q ) : bs) if and only if (unk)∞k=0 ∈ {`p(∆m

q )}β for all n ∈ N ∪ {0} and (5.5) holds with ũnk

instead of unk.

(v) U ∈ (`p(∆m
q ) : cs) if and only if (unk)∞k=0 ∈ {`p(∆m

q )}β for all n ∈ N ∪ {0} and (5.5) and (5.6) hold
with ũnk instead of unk.

Corollary 5.5. Let U = (unk) be an infinite matrix. Then, by Theorem 5.2, the following conditions
hold:

(i) U = (unk) ∈ (c0 : `p(∆m
q )) = (c : `p(∆m

q )) = (`∞ : `p(∆m
q )) if and only if (5.7) holds with bnk instead

of unk.

(ii) U = (unk) ∈ (bs : `p(∆m
q )) if and only if (5.3) and (5.8) hold with bnk instead of unk.

(iii) U = (unk) ∈ (cs : `p(∆m
q )) if and only if (5.9) holds with bnk instead of unk.

6. Conclusions

The theory of the q-analogue plays a significant role in various fields of mathematical, physical,
and engineering sciences. Due to its vast applications in diverse fields of mathematics, several studies
related to q-calculus can be found in the literature.

AIMS Mathematics Volume 8, Issue 8, 18607–18617.
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Recently, the construction of sequence spaces using q-calculus has been realized. The difference
matrix is the most commonly used matrix in summability theory. In this study, we use the q-analogue
version of the difference matrix of order m, thus providing new results.
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