In this paper, we study the Orlicz estimates for the parabolic Schrödinger operator
L=∂t−ΔX+V,
where the nonnegative potential V belongs to a reverse Hölder class on nilpotent Lie groups G and ΔX is the sub-Laplace operator on G. Under appropriate growth conditions of the Young function, we obtain the regularity estimates of the operator L in the Orlicz space by using the domain decomposition method. Our results generalize some existing ones of the Lp estimates.
Citation: Kelei Zhang. Orlicz estimates for parabolic Schrödinger operators with non-negative potentials on nilpotent Lie groups[J]. AIMS Mathematics, 2023, 8(8): 18631-18648. doi: 10.3934/math.2023949
[1] | Shuai Li, Tianqing An, Weichun Bu . Existence results for Schrödinger type double phase variable exponent problems with convection term in RN. AIMS Mathematics, 2024, 9(4): 8610-8629. doi: 10.3934/math.2024417 |
[2] | Xiaofei Cao, Yuyue Huang, Xue Hua, Tingyu Zhao, Sanzhang Xu . Matrix inverses along the core parts of three matrix decompositions. AIMS Mathematics, 2023, 8(12): 30194-30208. doi: 10.3934/math.20231543 |
[3] | Fuya Hu, Chengshi Huang, Zhijie Jiang . Weighted composition operators on α-Bloch-Orlicz spaces over the unit polydisc. AIMS Mathematics, 2025, 10(2): 3672-3690. doi: 10.3934/math.2025170 |
[4] | Simone Fiori . Coordinate-free Lie-group-based modeling and simulation of a submersible vehicle. AIMS Mathematics, 2024, 9(4): 10157-10184. doi: 10.3934/math.2024497 |
[5] | Zhongxian Huang . Biderivations of the extended Schrödinger-Virasoro Lie algebra. AIMS Mathematics, 2023, 8(12): 28808-28817. doi: 10.3934/math.20231476 |
[6] | Yessica Hernández-Eliseo, Josué Ramírez-Ortega, Francisco G. Hernández-Zamora . Toeplitz operators on two poly-Bergman-type spaces of the Siegel domain D2⊂C2 with continuous nilpotent symbols. AIMS Mathematics, 2024, 9(3): 5269-5293. doi: 10.3934/math.2024255 |
[7] | Chang-Jian Zhao . Orlicz mixed chord-integrals. AIMS Mathematics, 2020, 5(6): 6639-6656. doi: 10.3934/math.2020427 |
[8] | Shuqi Tang, Chunhua Li . Decay estimates for Schrödinger systems with time-dependent potentials in 2D. AIMS Mathematics, 2023, 8(8): 19656-19676. doi: 10.3934/math.20231002 |
[9] | Zhaoyue Sui, Feng Zhou . Pointwise potential estimates for solutions to a class of nonlinear elliptic equations with measure data. AIMS Mathematics, 2025, 10(4): 8066-8094. doi: 10.3934/math.2025370 |
[10] | Tohru Nakamura . Asymptotic stability of degenerate stationary solution to a system of viscousconservation laws in half line. AIMS Mathematics, 2018, 3(1): 35-43. doi: 10.3934/Math.2018.1.35 |
In this paper, we study the Orlicz estimates for the parabolic Schrödinger operator
L=∂t−ΔX+V,
where the nonnegative potential V belongs to a reverse Hölder class on nilpotent Lie groups G and ΔX is the sub-Laplace operator on G. Under appropriate growth conditions of the Young function, we obtain the regularity estimates of the operator L in the Orlicz space by using the domain decomposition method. Our results generalize some existing ones of the Lp estimates.
Orlicz spaces have been widely studied since they were introduced by Orlicz [1], see for instance Orlicz space [2,3], weighted Orlicz space [4] and fractional order Orlicz space [5]. The regularity estimates of operators play an important role in various fields of analysis. Several boundedness properties of integral operators are applied to the study of the regularity of elliptic and parabolic equations with discontinuous coefficients[6,7]. Moreover, Abdalmonem and Scapellato [8] have considered some Morrey-Herz spaces with variable exponents and have examined some boundedness properties of intrinsic square functions and their commutators in this framework. Additionally, in [9], Deringoz et al. studied the Calderon-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces. Recently, Orlicz estimates for some operators have also been obtained [10,11,12].
The analytical study of nonlinear partial differential equations is one of the most interesting fields of research for many researchers in recent years[13,14,15,16,17,18]. In this paper, we are interested in the regularity estimates in Orlicz spaces for the parabolic Schrödinger operator with non-negative potentials on nilpotent Lie groups. In Euclidean space, many scholars have obtained many regularity estimates for elliptic and parabolic Schrödinger operators, such as Lp estimates [19,20,21] and Orlicz estimates [22,23,24]. Li [25] obtained the Lp estimates for the Schrödinger operators on nilpotent Lie groups, which generalizes the results in Euclidean space [20]. Liu, Huang and Dong [26] obtained the Lp estimates for the parabolic Schrödinger operators on nilpotent Lie groups. Yang and Li [27] established the boundedness and compactness of commutators related with Schrödinger operators on Heisenberg groups.
Acerbi and Mingione [28] proposed a new domain decomposition approach, and applied it to study the local Sobolev estimates for the degenerate parabolic p-Laplacian systems. Wang, Yao, Zhou and Jia [29] encoded and simplified the iteration-covering procedure used in [28] and extended it to the whole space, and obtained the Orlicz estimates for the Poisson equation. Moreover, Yao [22,23] improved the method in [28,29], and obtained the Orlicz estimates for the Schrödinger operators in Euclidean space. We will extend the method of [22,23] to the nilpotent Lie groups, and apply it to obtain the Orlicz estimates for the parabolic Schrödinger operator with non-negative potentials on nilpotent Lie groups, which extend the Lp estimates in [26].
Let G be a simply connected nilpotent Lie group, and the corresponding Lie algebra is g. Assume X={X1,...,Xm} is a Hörmander system of left invariant vector fields on G. In this paper, we consider the following parabolic Schrödinger operators on G
Lu(z)=∂tu(z)−ΔXu(z)+V(x)u(z),z=(x,t)∈G×(0,+∞), | (1.1) |
where ΔX=∑mi=1X2i is the sub-Laplacian on G, and the potential V(x) belongs to the reverse Hölder class on G: V(x)∈RHq(1<q<+∞) if V(x)∈Lqloc(G), V(x)>0 almost everywhere, and there is a positive constant C such that for all metric balls of G,
(|Br|−1∫BrVq(x)dx)1/q⩽C(|Br|−1∫BrV(x)dx). | (1.2) |
The smallest constant C that makes (1.2) true is called the RHq constant of V. If q=+∞, then the left-hand side of (1.2) is essential supremum of V on Br, i.e.,
supBrV(x)⩽C(|Br|−1∫BrV(x)dx). | (1.3) |
It's clear that V∈RH∞ implies that V∈RHq for 1<q<+∞.
Inspired by [22,23] and based on the Lp estimate in [26], we will study the Orlicz estimates for the operator (1.1) on nilpotent Lie groups. When V∈RHq (1<q<+∞) according to the method in [22,23], it is difficult to obtain a result similar to (3.7) in [22] or (2.24) in [23]. Therefore, we need to improve the domain decomposition method and the measure estimation of level sets in [22,23].
The main results of this paper are as follows.
Theorem 1. Assume ϕ∈Δ2∩∇2 and V∈RHq,q>max{D/2,α1}. Then for any u∈C∞0(G×(0,+∞)), we have Vu∈Lϕ(G×(0,+∞)) and
∫G×(0,+∞)ϕ(|Vu|)dz⩽c∫G×(0,+∞)ϕ(|Lu|)dz, | (1.4) |
where the positive constant c is independent of V and u. See Section 2 for the young function ϕ, the global Δ2 condition, the global ∇2 condition, the constant α1 and the dimension D.
The proof of Theorem 1 is based on the following local estimate.
Theorem 2. Suppose that V∈RHq,q>D2. If h(x,t) satisfies ∂th−ΔXh+Vh=0 in Q4r(z0), then there is a constant c>0 independent of V,h,r,z0 such that
supz∈Qr(z0)|h(z)|⩽cr2V(B4r(x0))∫Q4r(z0)V|h|dz, | (1.5) |
where z0=(x0,t0)∈G×(0,+∞), Qr(z0) is the parabolic cylinders in G×(0,+∞), and Br(x0) is the metric ball of center at x0 and radius r in G (see Section 2), V(B4r(x0))=∫B4r(x0)V(x)dx.
Using Theorem 1 and the approximation method, it immediately gets the following corollary.
Corollary 3. Assume that ϕ∈Δ2∩∇2 and V∈RHq,q>max{D/2,α1}. Then for any u∈W1,2ϕ,0(G×(0,+∞)), there exists is a positive constant c independent of V and u such that
∫G×(0,+∞)ϕ(|Vu|)dxdt⩽c∫G×(0,+∞)ϕ(|Lu|)dxdt. | (1.6) |
See Definition 11 for the definition of W1,2ϕ,0(G×(0,+∞)).
Remark 4. Theorem 1 generalizes the Lp estimate for the Schrödinger operator in [26] to the Orlicz estimate. In fact, due to tp∈Δ2∩∇2,t>0,p>1, letting ϕ(t)=tp,t>0,p>1, we immediately obtain the Lp estimates for (1.1) which have been obtained in [26] by the pointwise estimate for the heat kernel of Schrödinger operators. Here we generalizes the condition V∈RH∞ to the condition V∈RHq, which is different from [22,23].
This paper is organized as follows. In Section 2, we introduce the definitions and related conclusions of nilpotent Lie groups and Orlicz spaces. In Section 3, inspired by [22,23], the level set Eλ(1) (see (3.5)) is decomposed into a family of disjoint parabolic cylinders by using the covering lemma in homogeneous spaces (see Lemma 14). We prove Theorem 1, Theorem 2 and Corollary 3 in Section 4. In Section 5, we state the main conclusions of this paper.
This subsection introduces the relevant results of nilpotent Lie groups, and the proofs and more properties and examples can be found in [30].
Let G be a simply connected nilpotent Lie group, and the corresponding Lie algebra is g. Assume X={X1,X2,...,Xm} is a Hörmander system of left invariant vector fields on G. X1,X2,...,Xm satisfy Hörmander's condition [31]. It can be seen from [32] that the left invariant vector field can induce the Carnot-Carathéodory distance dc: for any δ>0, let A(δ) be the set of absolutely continuous curves γ:[0,1]→G such that
γ′(t)=m∑i=1ai(t)Xi(γ(t)),m∑i=1|ai(t)|⩽δ,a.e.t∈[0,1]. |
Then for any ξ,η∈G,
dc(ξ,η)=inf{δ>0:∃δ∈A(δ),γ(0)=ξ,γ(1)=η}. |
Let
B(x,r)≡Br(x) = {y∈G:dc(y,x)<r} |
be the metric ball of center at x and radius r in G. Let dx be the Haar measure on G. For any measurable set A⊆G, |A| denotes the measure of A. Assume that e is the unit element of G, then for any x∈G and r>0, |B(e,r)|=|B(x,r)|. d and D denote the local dimension and the dimension at infinity of G, respectively. Let D⩾d⩾2. According to [30], there is a positive constant C1 such that
C−11rd⩽|B(e,r)|⩽C1rd,∀0⩽r⩽1, |
C−11rD⩽|B(e,r)|⩽C1rD,∀1⩽r<+∞. |
Moreover, there exist positive constants C2=C2(C1,d,D)>0 and C3 such that
C−12(Rr)d⩽|B(e,R)||B(e,r)|⩽C2(Rr)D,∀0<r<R<+∞,|B(e,2r)|⩽C3|B(e,r)|,∀0<r<+∞. | (2.1) |
The parabolic metric dp in G×(0,+∞) is defined by
dp(z,z0)=max{dc(x,x0),|t−t0|1/2}, |
where z=(x,t),z0=(x0,t0)∈G×(0,+∞). For any z0=(x0,t0)∈G×(0,∞) and r>0, let
Q(z0,r)=Qr(z0)={z=(x,t)∈G×(0,+∞):dc(x,x0)<r,|t−t0|<r2} |
be the parabolic cylinders of center at z0 and radius r in G×(0,+∞).
Here for the readers convenience, we give some definitions and related lemmas in Orlicz spaces, and more properties and proofs can be found in [23,33,34,35].
We denote by Φ the function class that consists of all monotonically increasing convex functions ϕ:[0, + ∞)→[0, + ∞).
Definition 5. ([23]) A function ϕ∈Φ is called a Young function if
ϕ(0)=0,limt→+∞ϕ(t)=+∞,limt→0+ϕ(t)t=0,limt→+∞ϕ(t)t=+∞. |
Definition 6. ([23]) A Young function ϕ is said to satisfy the global Δ2 condition, denoted by ϕ∈Δ2, if there exists a constant K>0 such that for any t>0,
ϕ(2t)⩽Kϕ(t). | (2.2) |
Definition 7. ([23]) A Young function ϕ is said to satisfy the global ∇2 condition, denoted by ϕ∈∇2, if there exists a constant a>1 such that for any t>0,
ϕ(at)⩾2aϕ(t). | (2.3) |
The following lemma can be easily obtained from (2.2) and (2.3). For example, see [35].
Lemma 8. Let ϕ be a Young function. If ϕ∈Δ2∩∇2, then for any 0<θ2⩽1⩽θ1<+∞,
ϕ(θ1t)⩽Kθ1α1ϕ(t), | (2.4) |
ϕ(θ2t)⩽2aθ2α2ϕ(t), | (2.5) |
where α1=logK2,α2=log2a+1,α1>α2>1.
Definition 9. (Orlicz spaces, [33,34]) Let ϕ be a Young function. Then the Orlicz class Kϕ(G×(0,+∞)) is a set of all measurable functions g:G×(0,+∞)→R satisfying
‖ | (2.6) |
Definition 10. (Orlicz-Sobolev spaces, [33,34]) The Orlicz-Sobolev space W_\phi ^{1, 2}({\Bbb G} \times (0, + \infty)) is the set of all functions u satisfying {u_t}, \; {X^\alpha }u \in {L^\phi }({\Bbb G} \times (0, \infty)), \, 0 \leqslant \left| \alpha \right| \leqslant 2 with the norm defined by
\begin{eqnarray*} \begin{aligned} {\left\| u \right\|_{W_\phi ^{1, 2}({\Bbb G} \times (0, + \infty ))}} & = {\left\| u \right\|_{{L^\phi }({\Bbb G} \times (0, + \infty ))}} + {\left\| {Xu} \right\|_{{L^\phi }({\Bbb G} \times (0, + \infty ))}}\\ &\quad + {\left\| {{X^2}u} \right\|_{{L^\phi }({\Bbb G} \times (0, + \infty ))}} + {\left\| {{u_t}} \right\|_{{L^\phi }({\Bbb G} \times (0, + \infty ))}}, \end{aligned} \end{eqnarray*} |
where Xu = \left({{X_1}u, ..., {X_m}u} \right) , {\left\| {Xu} \right\|_{{L^\phi }({\Bbb G} \times (0, + \infty))}} = \sum\limits_{i = 1}^m {{{\left\| {{X_i}u} \right\|}_{{L^\phi }({\Bbb G} \times (0, + \infty))}}} , {X^2}u = \{ {X_i}{X_j}u\} _{i, j = 1}^m , {\left\| {{X^2}u} \right\|_{{L^\phi }({\Bbb G} \times (0, + \infty))}} = \sum\limits_{i, j = 1}^m {{{\left\| {{X_i}{X_j}u} \right\|}_{{L^\phi }({\Bbb G} \times (0, + \infty))}}} .
Bramanti et al. [21] defined the function space W_V^{2, p}\left({{{\Bbb R}^n}} \right) is the closure of C_0^\infty \left({{{\Bbb R}^n}} \right) in the norm
{\left\| u \right\|_{W_V^{2, p}\left( {{{\Bbb R}^n}} \right)}} = {\left\| u \right\|_{{W^{2, p}}\left( {{{\Bbb R}^n}} \right)}} + {\left\| {Vu} \right\|_{{L^p}\left( {{{\Bbb R}^n}} \right)}}. |
Inspired by this, we introduce the following function space.
Definition 11. The function space W_{\phi, 0}^{1, 2}({\Bbb G} \times (0, + \infty)) is the closure of C_0^\infty ({\Bbb G} \times (0, + \infty)) in the norm
{\left\| u \right\|_{W_{\phi , V}^{1, 2}({\Bbb G} \times (0, + \infty ))}} = {\left\| u \right\|_{W_\phi ^{1, 2}({\Bbb G} \times (0, + \infty ))}} + {\left\| {Vu} \right\|_{{L^\phi }({\Bbb G} \times (0, + \infty ))}}. |
Using the proof method of Lemma 2.1 in [23], it can be proved that if g \in {L^\phi }\left({{\Bbb G} \times (0, + \infty)} \right) , then
\begin{equation} \int_{{\Bbb G} \times (0, + \infty )} {\phi \left( {\left| g \right|} \right)} dz = \int_0^{ + \infty } {\left| {\left\{ {x \in {\Bbb G} \times (0, + \infty ):\left| g \right| > t} \right\}} \right|} d\left[ {\phi \left( t \right)} \right]. \end{equation} | (2.7) |
Similar to Byun and Ryu [36], it obtains the following lemma.
Lemma 12. Let \Omega \subset {\Bbb G} \times (0, + \infty) be a bounded domain. If \phi \in {\Delta _2} \cap {\nabla _2} , then
{L^{{\alpha _1}}}\left( \Omega \right) \subset {L^\phi }\left( \Omega \right) \subset {L^{{\alpha _2}}}\left( \Omega \right) \subset {L^1}\left( \Omega \right), |
where \alpha_1 and \alpha_2 are the constant in Lemma 8.
Denoting
\begin{equation} p = (1 + {\alpha _2})/2, \end{equation} | (3.1) |
then we have 1 < p < \alpha_2 , where \alpha_2 is the constant in Lemma 8. Assume that u \in C_0^\infty ({\Bbb G} \times (0, + \infty)) . Some notations are given below for convenience. Denote
\begin{equation} \lambda _0^p = {\int_{{\Bbb G} \times (0, {\text{ + }}\infty )} {\left| {Vu} \right|} ^p}dz + \frac{1} {{{\varepsilon ^p}}}{\int_{{\Bbb G} \times (0, {\text{ + }}\infty )} {\left| f \right|} ^p}dz, \end{equation} | (3.2) |
where \varepsilon \in (0, 1) is a small enough constant which will be determined later, f = Lu , dz = dxdt . Let
\begin{equation} {u_\lambda } = \frac{u}{{{\lambda _0}\lambda }}, \; {f_\lambda } = \frac{f}{{{\lambda _0}\lambda }}, \; \forall \lambda > 0. \end{equation} | (3.3) |
Then it infers L{u_\lambda } = {f_\lambda } . Additionally, for any parabolic cylinder Q in {\Bbb G} \times (0, + \infty) , we write
\begin{equation} {J_\lambda }[Q] = \frac{1} {{\left| Q \right|}}\int_Q {{{\left| {V{u_\lambda }} \right|}^p}} dz + \frac{1} {{{\varepsilon ^p}\left| Q \right|}}{\int_Q {\left| {{f_\lambda }} \right|} ^p}dz \end{equation} | (3.4) |
and the level set as
\begin{equation} {E_\lambda }(1) = \left\{ {z = (x, t) \in {\Bbb G} \times (0, +\infty ):\left| {V{u_\lambda }} \right| > 1} \right\}. \end{equation} | (3.5) |
Lemma 13. (Covering lemma, [37]) Let E be a bounded measurable set in the homogeneous space (S, d, \mu) . If \left\{ {B\left({x, {\rho _x}} \right)} \right\} is any family of spheres with bounded radius covering E , then there exists at most countable disjoint subfamily \left\{ {B\left({{x_i}, {\rho _i}} \right)} \right\} such that \left\{ {B\left({{x_i}, {k_0}{\rho _i}} \right)} \right\} covering E with
c\left| E \right| \leqslant \sum\limits_i {\left| {B\left( {{x_i}, {\rho _i}} \right)} \right|}, |
where the constants {k_0} \geqslant 1 and c > 0 only depend on S .
Inspired by [22,23], we decompose the level set E_\lambda(1) into a family of disjoint parabolic cylinders.
Lemma 14. For any \lambda > 0 , there is a family of disjoint parabolic cylinders {\left\{ {Q\left({{z_i}, {\rho _i}} \right)} \right\}_{i \geqslant 1}} with {z_i} = ({x_i}, {t_i}) \in {E_\lambda }(1) , {\rho _i} = \rho_{z_i} ({\lambda }) > 0 such that
\begin{equation} {J_\lambda }[Q\left( {{z_i}, {\rho _i}} \right)] = 1, \; {J_\lambda }[Q\left( {{z_i}, \rho } \right)] < 1, \; \forall \rho > {\rho _i} \end{equation} | (3.6) |
and
\begin{equation} {E_\lambda }\left( 1 \right) \subset \bigcup\limits_{i \geqslant 1} Q \left( {{z_i}, {k_0}{\rho _i}} \right)\bigcup \text{negligible set}, \end{equation} | (3.7) |
where {k_0} \geqslant 1 is a constant. Moreover, we have
\begin{eqnarray} &&\left| {{Q_{{\rho _i}}}\left( {{z_i}} \right)} \right| \leqslant \frac{{{3^p}}}{{{3^p} - 2}}\\ &&\cdot\left( {\int_{\left\{ {z \in {Q_{{\rho _i}}}\left( {{z_i}} \right):\left| {V{u_\lambda }} \right| > \frac{1} {3}} \right\}} {{{\left| {V{u_\lambda }} \right|}^p}dz + \frac{1} {{{\varepsilon ^p}}}\int_{\left\{ {z \in {Q_{{\rho _i}}}\left( {{z_i}} \right):\left| {{f_\lambda }} \right| > \frac{\varepsilon } {3}} \right\}} {{{\left| {{f_\lambda }} \right|}^p}dz} } } \right). \end{eqnarray} | (3.8) |
Proof of Lemma 14: For any fixed z = (x, t) \in {\Bbb G} \times (0, +\infty) and \rho\left(\lambda \right) \geqslant {\rho _0}\left(\lambda \right) > 0 with {\lambda ^p}\left| {{Q_{{\rho _0}}}(z)} \right| = 1 , it follows from [33,34,35] that
\begin{eqnarray*} &&{J_\lambda }\left[ {{Q_\rho }\left( z \right)} \right]\\ &&\leqslant \frac{1} {{\left| {{Q_\rho }\left( z \right)} \right|}}\left( {\int_{{\Bbb G} \times (0, \infty )} {{{\left| {V(y){u_\lambda }(y, s)} \right|}^p}dyds + \frac{1} {{{\varepsilon ^p}}}\int_{{\Bbb G} \times (0, \infty )} {{{\left| {{f_\lambda }(y, s)} \right|}^p}dyds} } } \right)\\ && = \frac{1}{{{\lambda ^p}\left| {{Q_\rho }\left( z \right)} \right|}}\\ &&\leqslant 1. \end{eqnarray*} |
Thus it infers
\begin{equation} \mathop {\sup }\limits_{z \in {\Bbb G} \times (0, +\infty )} \mathop {\sup }\limits_{\rho \geqslant {\rho _0}} {J_\lambda }\left[ {{Q_\rho }\left( z \right)} \right] \leqslant 1. \end{equation} | (3.9) |
Then for a.e. z = (x, t) \in {E_\lambda }\left(1 \right) , by (3.4) and Lebesgue's differential theorem we get
\begin{eqnarray} \begin{aligned} \mathop {\lim }\limits_{\rho \to 0} {J_\lambda }\left[ {{Q_\rho }\left( z \right)} \right] &\geqslant \mathop {\lim }\limits_{\rho \to 0} \frac{1} {{\left| {{Q_\rho }(z)} \right|}}{\int_{{B_\rho }(z)} {\left| {V(y){u_\lambda }(y, s)} \right|} ^p}dyds \\ & = {\left| {V(x){u_\lambda }(x, t)} \right|^p} \\ & > 1. \end{aligned} \end{eqnarray} | (3.10) |
From (3.10) we know that there is \rho(\lambda) > 0 such that
{J_\lambda }\left[ {{Q_\rho }\left( z \right)} \right] > 1. |
By using the above formula and (3.9), it can be seen that there is {\rho _z} \in (0, {\rho _0}] such that
{\rho _z} = \max \left\{ {\rho \in (0, {\rho _0}]: {J_\lambda }\left[ {{Q_\rho }\left( z \right)} \right] = 1 } \right\}. |
Thus,
\begin{equation*} {J_\lambda }\left[ {{Q_{{\rho _z}}}\left( z \right)} \right] = 1, \; {J_\lambda }\left[ {{Q_\rho }\left( z \right)} \right] < 1, \; \forall \rho > {\rho_z}. \end{equation*} |
To sum up, for a.e. z \in {E_\lambda }\left(1 \right) , there is a family of parabolic cylinders Q_{\rho_{z}}(z) constructed as above. \left({{\Bbb G} \times (0, + \infty), {d_p}, dxdt} \right) is a homogeneous space, therefore, according to Lemma 13, there is a family of countable disjoint parabolic cylinders {\left\{ {{Q_{{\rho _i}}}\left({{z_i}} \right)} \right\}_{i \geqslant 1}} such that (3.6) and (3.7) hold.
Moreover, from (3.6) we obtain
\left| {{Q_{{\rho _i}}}\left( {{z_i}} \right)} \right| = \int_{{Q_{{\rho _i}}}\left( {{z_i}} \right)} {{{\left| {V{u_\lambda }} \right|}^p}dz + \frac{1}{{{\varepsilon ^p}}}\int_{{Q_{{\rho _i}}}\left( {{z_i}} \right)} {{{\left| {{f_\lambda }} \right|}^p}dz} }. |
It follows from the above formula that
\begin{eqnarray*} \begin{aligned} \left| {{Q_{{\rho _i}}}\left( {{z_i}} \right)} \right| &\leqslant \int_{\left\{ {z \in {Q_{{\rho _i}}}\left( {{z_i}} \right): \left| {V{u_\lambda }} \right| > \frac{1} {3}} \right\}} {{{\left| {V{u_\lambda }} \right|}^p}dz + \frac{1} {{{3^p}}}\left| {{Q_{{\rho _i}}}\left( {{z_i}} \right)} \right|} \\ &\quad + \frac{1} {{{\varepsilon ^p}}}\int_{\left\{ {z \in {Q_{{\rho _i}}}\left( {{z_i}} \right): \left| {{f_\lambda }} \right| > \frac{\varepsilon } {3}} \right\}} {{{\left| {{f_\lambda }} \right|}^p}dz} + \frac{1} {{{3^p}}}\left| {{Q_{{\rho _i}}}\left( {{z_i}} \right)} \right|. \end{aligned} \end{eqnarray*} |
Then (3.8) is immediately obtained. This completes our proof.
To prove Theorem 2, three useful lemmas are first given.
Lemma 15. ([38, Chapter Ⅰ]) If V\in RH_q, \; q > 1 , then there exist 1 \leqslant {p_0} < +\infty and a constant c > 0 such that for any nonnegative function g and all parabolic cylinders Q_r ,
{\left( {\frac{1} {{\left| {{Q_r}} \right|}}\int_{{Q_r}} {gdz} } \right)^{{p_0}}} \leqslant \frac{c} {{{r^2}V\left( {{B_r}} \right)}}\int_{{Q_r}} {{g^{{p_0}}}Vdz}, |
where V\left({{B_r}} \right) = \int_{{B_r}} {Vdx}.
Lemma 16. ([39, Lemma 1.4]) Let E be an open subset of the homogeneous space (S, d, \mu) . \mathcal{F}(E) is the set of all metric spheres in E . If for 0 < q_1 < p and 0 \leqslant f \in L_{loc}^p(\mu) , there exist the constants A > 1, \; 1 < {\sigma _0} \leqslant {\sigma _0}^\prime such that
{\left( {\frac{1} {{\left| B \right|}}\int_B {{f^p}} d\mu } \right)^{1/p}} \leqslant A{\left( {\frac{1} {{\left| {{\sigma _0}B} \right|}}\int_{{\sigma _0}B} {{f^{{q_1}}}} d\mu } \right)^{1/{q_1}}}, \quad \forall B:\;{\sigma '_0}B \in \mathcal{F}(E), |
then for 0 < r < q_1 and 1 < \sigma \leqslant \sigma ' \leqslant {\sigma _0}^\prime , there exists a constant A' > 1 such that
{\left( {\frac{1} {{\left| B \right|}}\int_B {{f^p}} d\mu } \right)^{1/p}} \leqslant A'{\left( {\frac{1} {{\left| {\sigma B} \right|}}\int_{\sigma B} {{f^r}} d\mu } \right)^{1/r}}, \quad \forall B:\;\sigma 'B \in \mathcal{F}(E). |
For {z_0} = ({x_0}, {t_0}) \in {\Bbb G} \times (0, +\infty) and r > 0 , we write
\tilde Q({z_0}, r){\text{ = }}\left\{ {z = (x, t) \in {\Bbb G} \times (0, +\infty ):\;{d_c}(x, {x_0}) < r, {t_0} - {r^2} < t < {t_0}} \right\}. |
Lemma 17. ([26, Lemma 2.9]) Assume that V \in R{H_q}, q > \frac{D}{2} . If h(x, t) satisfies the homogeneous equation
{\partial _t}h - {\Delta _X}h + Vh = 0\; \text{in}\; \tilde Q({z_0}, 4r), |
then there exists a positive constant c such that
\mathop {\sup }\limits_{z \in \tilde Q({z_0}, r)} \left| h \right| \leqslant c{\left( {\frac{1} {{\left| {\tilde Q({z_0}, 2r)} \right|}}\int_{\tilde Q({z_0}, 2r)} {{{\left| h \right|}^2}} dz} \right)^{1/2}}. |
Now we begin to prove Theorem 2.
Proof of Theorem 2: Denoting {Q_1} = Q(({x_0}, {t_0} + {r^2}), \sqrt 2 r) , {\tilde Q_1} = \tilde Q(({x_0}, {t_0} + {r^2}), \sqrt 2 r) , 2{Q_1} = Q(({x_0}, {t_0} + {r^2}), 2\sqrt 2 r) , 2{\tilde Q_1} = \tilde Q(({x_0}, {t_0} + {r^2}), 2\sqrt 2 r) , then
Q({z_0}, r) \subset {\tilde Q_1} \subset 2{\tilde Q_1} \subset 2{Q_1} \subset Q({z_0}, 3r). |
It follows from Lemma 17 that
\begin{eqnarray} \begin{aligned} \mathop {\sup }\limits_{Q({z_0}, r)} \left| h \right| &\leqslant \mathop {\sup }\limits_{{{\tilde Q}_1}} \left| h \right| \leqslant c{\left( {\frac{1} {{\left| {2{{\tilde Q}_1}} \right|}}\int_{2{{\tilde Q}_1}} {{{\left| h \right|}^2}dz} } \right)^{1/2}} \\ &\leqslant c{\left( {\frac{1} {{\left| {Q({z_0}, r)} \right|}}\int_{Q({z_0}, 4r)} {{{\left| h \right|}^2}dz} } \right)^{1/2}} \\ &\leqslant c{\left( {\frac{1} {{\left| {Q({z_0}, 4r)} \right|}}\int_{Q({z_0}, 4r)} {{{\left| h \right|}^2}dz} } \right)^{1/2}}. \end{aligned} \end{eqnarray} | (4.1) |
Using (4.1) and Lemma 16, we obtain
\mathop {\sup }\limits_{Q({z_0}, r)} \left| h \right| \leqslant c{\left( {\frac{1} {{\left| {Q({z_0}, 4r)} \right|}}\int_{Q({z_0}, 4r)} {{{\left| h \right|}^l}dz} } \right)^{1/l}}, \quad \forall 0 < l < 2. |
When l > 2 , by (4.1) and Hölder's inequality, it infers
\mathop {\sup }\limits_{Q({z_0}, r)} \left| h \right| \leqslant c{\left( {\frac{1} {{\left| {Q({z_0}, 4r)} \right|}}\int_{Q({z_0}, 4r)} {{{\left| h \right|}^l}dz} } \right)^{1/l}}, \quad \forall l > 2. |
Thus,
\begin{equation} \mathop {\sup }\limits_{Q({z_0}, r)} \left| h \right| \leqslant c{\left( {\frac{1} {{\left| {Q({z_0}, 4r)} \right|}}\int_{Q({z_0}, 4r)} {{{\left| h \right|}^l}dz} } \right)^{1/l}}, \quad \forall l > 0. \end{equation} | (4.2) |
Letting \frac{1}{l} = {p_0} , from (4.2) and Lemma 15 we get
\begin{eqnarray*} \begin{aligned} \mathop {\sup }\limits_{Q({z_0}, r)} \left| h \right| &\leqslant c{\left( {\frac{1} {{\left| {Q({z_0}, 4r)} \right|}}\int_{Q({z_0}, 4r)} {{{\left| h \right|}^{\frac{1} {{{p_0}}}}}dz} } \right)^{{p_0}}}\\ &\leqslant \frac{C} {{{r^2}V({B_{4r}}({x_0}))}}\int_{Q({z_0}, 4r)} {V\left| h \right|dz}. \end{aligned} \end{eqnarray*} |
This completes our proof.
In this subsection, based on Theorem 2 and the domain decomposition method, we give the proof of Theorem 1.
Proof of Theorem 1: For u \in C_0^\infty ({\Bbb G} \times (0, +\infty)) , there exists a parabolic cylinder Q_{R_0} such that \text{spt}\, (u) \subset {Q_{{R_0}}} . Combining V \in R{H_q} , q > \max \{ D/2, {\alpha _1}\} , (2.2) and (2.3), we obtain
\begin{eqnarray*} &&\quad \int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| {Vu} \right|} \right)} dz\\ && = \int_{\left\{ {z \in {\Bbb G} \times (0, +\infty ): \left| {Vu} \right| \geqslant 1} \right\}} {\phi \left( {\left| {Vu} \right|} \right)dz} + \int_{\left\{ {z \in {\Bbb G} \times (0, +\infty ): \left| {Vu} \right| < 1} \right\}} {\phi \left( {\left| {Vu} \right|} \right)dz} \\ &&\leqslant K\phi \left( 1 \right)\int_{{\Bbb G} \times (0, + \infty )} {{{\left| {Vu} \right|}^{{\alpha _1}}}dz} + 2a\phi \left( 1 \right)\int_{{\Bbb G} \times (0, + \infty )} {{{\left| {Vu} \right|}^{{\alpha _2}}}dz} \\ &&\leqslant c\left( {\mathop {\sup }\limits_{{Q_{{R_0}}}} {{\left| u \right|}^{{\alpha _1}}} + \mathop {\sup }\limits_{{Q_{{R_0}}}} {{\left| u \right|}^{{\alpha _2}}}} \right)\left( {\int_{{Q_{{R_0}}}} {{{\left| V \right|}^{{\alpha _1}}}dz + \int_{{Q_{{R_0}}}} {{{\left| V \right|}^{{\alpha _2}}}dz} } } \right)\\ && < +\infty, \end{eqnarray*} |
that is, Vu \in {L^\phi }\left({{\Bbb G} \times (0, +\infty)} \right) . It follows from (2.7) that
\begin{eqnarray} &&\quad\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| {Vu} \right|} \right)} dx \\ && = \int_0^{ +\infty } {\left| {\left\{ {z \in {\Bbb G} \times (0, +\infty ):\left| {Vu} \right| > 2{N_0}{\lambda _0}\lambda } \right\}} \right|} d\left[ {\phi \left( {{\lambda _0}\lambda } \right)} \right], \end{eqnarray} | (4.3) |
where N_0 is taken as
\begin{equation} {N_0} = {\left( {\frac{1} {\varepsilon }} \right)^{\frac{{p - 1}} {{{\alpha _1} - p}}}} > 1, \end{equation} | (4.4) |
and the constants p and \alpha_1 are the same as those in (3.1) and Lemma 8. In fact, from the proof of the following Theorem 1, we only need to take N_0 > 1 to satisfy \mathop {\lim }\limits_{\varepsilon \to 0} {\varepsilon ^p}N_0^{{\alpha _1} - p} = 0 .
Now we begin to estimate \left| {\left\{ {z \in {\Bbb G} \times (0, +\infty):\left| {Vu} \right| > 2{N_0}{\lambda _0}\lambda } \right\}} \right| .
For any i\geqslant 1 , from Lemma 14 and (3.4) we deduce that
\begin{equation} \frac{1}{{\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|}}{\int_{{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} {\left| {V{u_\lambda }} \right|} ^p}dz \leqslant 1 \end{equation} | (4.5) |
and
\begin{equation} \frac{1}{{\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|}}{\int_{{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} {\left| {{f_\lambda }} \right|} ^p}dz \leqslant {\varepsilon ^p}, \end{equation} | (4.6) |
where k_0 is the constant in Lemma 14. Let w satisfy
\begin{equation} Lw = \overline {L{u_\lambda }} = \begin{cases} Lu_{\lambda}, &{z \in \;{Q_{4{k_0}{\rho _i}}}({z_i})};\\ 0, &{z \in ({\Bbb G} \times \mathbb{R})\backslash {Q_{4{k_0}{\rho _i}}}({z_i})}. \end{cases} \end{equation} | (4.7) |
By [26, Theorem 3.1], we have
\int_{{\Bbb G} \times {\mathbb R}} {{{\left| {Vw} \right|}^p}} dz \leqslant c\int_{{\Bbb G} \times {\mathbb R}} {{{\left| {\overline {L{u_\lambda }} } \right|}^p}} dz. |
Combined with (4.6) and (4.7),
\begin{eqnarray} \begin{aligned} \int_{{Q_{4{k_0}{\rho _i}}}({z_i})} {{{\left| {Vw} \right|}^p}} dz &\leqslant \int_{{\Bbb G} \times {\mathbb R}} {{{\left| {Vw} \right|}^p}} dz \\ &\leqslant c{\int_{{Q_{4{k_0}{\rho _i}}}({z_i})} {\left| {L{u_\lambda }} \right|} ^p}dz \\ &\leqslant c{\varepsilon ^p}\left| {{Q_{4{k_0}{\rho _i}}}({z_i})} \right|. \end{aligned} \end{eqnarray} | (4.8) |
Let h = u_{\lambda}-w . Then h satisfies
{\partial _t}h - {\Delta _X}h + Vh = 0\; \text{in}\; {Q_{4{k_0}{\rho _i}}}({z_i}). |
By virtue of (4.5) and (4.8), we get
\begin{eqnarray} \begin{aligned} \int_{{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} {{{\left| {Vh} \right|}^p}} dz &\leqslant {2^{p - 1}}\left( {{{\int_{{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} {\left| {Vw} \right|} }^p}dz + {{\int_{{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} {\left| {V{u_\lambda }} \right|} }^p}dz} \right) \\ &\leqslant c\left( {{\varepsilon ^p}\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right| + \left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|} \right) \\ &\leqslant c\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|. \end{aligned} \end{eqnarray} | (4.9) |
Denoting \mu = {\lambda _0}\lambda , we deduce that
\begin{eqnarray*} &&\quad \left| {\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vu} \right| > 2{N_0}\mu } \right\}} \right|\\ && = \left| {\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {V{u_\lambda }} \right| > 2{N_0}} \right\}} \right|\\ && \leqslant \left| {\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vh} \right| > {N_0}} \right\}} \right| + \left| {\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vw} \right| > {N_0}} \right\}} \right|\\ &&\equiv {I_1} + {I_2}. \end{eqnarray*} |
Next we estimate I_1 and I_2 . From (4.8) we find that
\begin{eqnarray*} \begin{aligned} {I_2} & = \left| {\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vw} \right| > {N_0}} \right\}} \right|\\ &\leqslant \frac{1} {{N_0^p}}\int_{{Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right)} {{{\left| {Vw} \right|}^p}dx} \\ &\leqslant c\frac{{{\varepsilon ^p}}} {{N_0^p}}\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|. \end{aligned} \end{eqnarray*} |
Using (1.2), Theorem 2, Hölder's inequality and (4.9), we conclude that
\begin{eqnarray*} \begin{aligned} {I_1} & = \left| {\left\{ {x \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vh} \right| > {N_0}} \right\}} \right|\\ &\leqslant \frac{1} {{N_0^q}}\int_{{Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right)} {{V^q}} {\left| h \right|^q}dx\\ &\leqslant \frac{1} {{N_0^q}}2{({k_0}{\rho _i})^2}\int_{{B_{{k_0}{\rho _i}}}({x_i})} {{V^q}} dx{\left( {\mathop {\sup }\limits_{{Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right)} \left| h \right|} \right)^q}\\ &\leqslant c\frac{1} {{N_0^q}}{({k_0}{\rho _i})^2}{\left| {{B_{{k_0}{\rho _i}}}\left( {{x_i}} \right)} \right|^{1 - q}}{\left( {\int_{{B_{{k_0}{\rho _i}}}({x_i})} V dx} \right)^q}{\left( {\mathop {\sup }\limits_{{Q_{{k_0}{\rho _i}}}({z_i})} \left| h \right|} \right)^q}\\ &\leqslant c\frac{1} {{N_0^q}}{\left| {{Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|^{1 - q}}{\left( {\int_{{Q_{4{k_0}{\rho _i}}}({z_i})} {\left| {Vh} \right|} dz} \right)^q}\\ &\leqslant c\frac{1} {{N_0^q}}{\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|^{1 - q/p}}{\left( {\int_{{B_{4{k_0}{\rho _i}}}({x_i})} {{{\left| {Vh} \right|}^p}} dz} \right)^{q/p}}\\ &\leqslant c\frac{1} {{N_0^q}}\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|. \end{aligned} \end{eqnarray*} |
Therefore, we have
\begin{equation} \left| {\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vu} \right| > 2{N_0}\mu } \right\}} \right| \leqslant c\left( {\frac{1} {{N_0^q}} + \frac{{{\varepsilon ^p}}} {{N_0^p}}} \right)\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|. \end{equation} | (4.10) |
It follows from (3.7), (4.10) and (3.8) that
\begin{eqnarray*} &&\quad \left| {\left\{ {z \in {\Bbb G} \times (0, + \infty ): \left| {Vu} \right| > 2{N_0}\mu } \right\}} \right|\\ &&\leqslant \sum\limits_i {\left| {\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vu} \right| > 2{N_0}\mu } \right\}} \right|} \\ &&\leqslant c\left( {\frac{1} {{N_0^q}} + \frac{{{\varepsilon ^p}}} {{N_0^p}}} \right)\sum\limits_i {\left| {{Q_{4{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|}\\ &&\leqslant c\left( {\frac{1} {{N_0^q}} + \frac{{{\varepsilon ^p}}} {{N_0^p}}} \right)\sum\limits_i {\left| {{Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right)} \right|}\\ &&\leqslant c\left( {\frac{1} {{N_0^q}} + \frac{{{\varepsilon ^p}}} {{N_0^p}}} \right)\left( {\frac{1} {{{\mu ^p}}}\sum\limits_i {[\int_{\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| {Vu} \right| > \frac{\mu } {3}} \right\}} {{{\left| {Vu} \right|}^p}dz} } } \right.\\ &&\left. {\;\; + \frac{1} {{{\varepsilon ^p}{\mu ^p}}}\int_{\left\{ {z \in {Q_{{k_0}{\rho _i}}}\left( {{z_i}} \right): \left| f \right| > \frac{{\varepsilon \mu }} {3}} \right\}} {{{\left| f \right|}^p}dz]} } \right)\\ &&\leqslant c\left( {\frac{1} {{N_0^q}} + \frac{{{\varepsilon ^p}}} {{N_0^p}}} \right)\left( {\frac{1} {{{\mu ^p}}}\int_{\left\{ {z \in {\Bbb G} \times (0, + \infty ): \left| {Vu} \right| > \frac{\mu } {3}} \right\}} {{{\left| {Vu} \right|}^p}dz} } \right.\\ &&\left. {\;\; + \frac{1} {{{\varepsilon ^p}{\mu ^p}}}\int_{\left\{ {z \in {\Bbb G} \times (0, + \infty ): \left| f \right| > \frac{{\varepsilon \mu }} {3}} \right\}} {{{\left| f \right|}^p}dz} } \right). \end{eqnarray*} |
Furthermore, by the above inequality and (4.3) we have
\begin{eqnarray*} &&\quad \int_{{\Bbb G} \times (0, + \infty )} {\phi \left( {\left| {Vu} \right|} \right)} dz\\ && = \int_0^{ + \infty } {\left| {\left\{ {z \in {\Bbb G} \times (0, + \infty ):\left| {Vu} \right| > 2{N_0}\mu } \right\}} \right|} d\left[ {\phi \left( {2{N_0}\mu } \right)} \right]\\ &&\leqslant c\left( {\frac{1} {{N_0^q}} + \frac{{{\varepsilon ^p}}} {{N_0^p}}} \right)\int_0^{ + \infty } {\frac{1} {{{\mu ^p}}}} \left\{ {\int_{\left\{ {z \in {\Bbb G} \times (0, + \infty ): \left| {Vu} \right| > \frac{\mu } {3}} \right\}} {{{\left| {Vu} \right|}^p}dz} } \right\}d\left[ {\phi \left( {2{N_0}\mu } \right)} \right]\\ &&\;\;+ c\left( {\frac{1} {{{\varepsilon ^p}N_0^q}} + \frac{1} {{N_0^p}}} \right)\int_0^{ + \infty } {\frac{1} {{{\mu ^p}}}\left\{ {\int_{\left\{ {z \in {\Bbb G} \times (0, + \infty ): \left| f \right| > \frac{{\varepsilon \mu }} {3}} \right\}} {{{\left| f \right|}^p}dz} } \right\}d\left[ {\phi \left( {2{N_0}\mu } \right)} \right]} \\ &&\equiv c\left( {\frac{1} {{N_0^q}} + \frac{{{\varepsilon ^p}}} {{N_0^p}}} \right){I_3} + c\left( {\frac{1} {{{\varepsilon ^p}N_0^q}} + \frac{1} {{N_0^p}}} \right){I_4}, \end{eqnarray*} |
where the constant c is independent of \varepsilon, \; N_0 . Now we estimate I_3 and I_4 . According to Fubini's theorem and integration by parts, we deduce that
\begin{eqnarray*} \begin{aligned} {I_3} & = \int_0^{ + \infty } {\frac{1} {{{\mu ^p}}}} \left\{ {\int_{\left\{ {x \in {\Bbb G}: \left| {Vu} \right| > \frac{\mu } {3}} \right\}} {{{\left| {Vu} \right|}^p}dz} } \right\}d\left[ {\phi \left( {2{N_0}\mu } \right)} \right]\\ & = \int_{{\Bbb G} \times (0, + \infty )} {{{\left| {Vu} \right|}^p}\left( {\int_0^{3\left| {Vu} \right|} {\frac{{d[\phi \left( {2{N_0}\mu } \right)]}}{{{\mu ^p}}}} } \right)} dz\\ & = {3^{ - p}}\int_{{\Bbb G} \times (0, + \infty )} {\phi (6{N_0}\left| {Vu} \right|)} dz + \int_{{\Bbb G} \times (0, {\text{ + }}\infty )} {{{\left| {Vu} \right|}^p}} dz \times \mathop {\lim }\limits_{\mu \to 0} \frac{{\phi \left( {2{N_0}\mu } \right)}} {{{\mu ^p}}}\\ &\quad + p\int_{{\Bbb G} \times (0, {\text{ + }}\infty )} {{{\left| {Vu} \right|}^p}\left( {\int_0^{3\left| {Vu} \right|} {\frac{{\phi \left( {2{N_0}\mu } \right)}} {{{\mu ^{p + 1}}}}d\mu } } \right)} dz. \end{aligned} \end{eqnarray*} |
By using (2.5) and 1 < p < \alpha_2 , it infers
0 \leqslant \mathop {\lim }\limits_{\mu \to 0} \frac{{\phi \left( {2{N_0}\mu } \right)}} {{{\mu ^p}}} \leqslant 2a\phi \left( {2{N_0}} \right)\mathop {\lim }\limits_{\mu \to 0} {\mu ^{{\alpha _2} - p}} = 0. |
Moreover, using Lemma 8, we have
\begin{eqnarray*} &&\quad \int_0^{3\left| {Vu} \right|} {\phi \left( {2{N_0}\mu } \right)/{\mu ^{p + 1}}d\mu }\\ && = \int_0^{3\left| {Vu} \right|} {\phi \left( {\frac{\mu } {{3\left| {Vu} \right|}} \cdot 6{N_0}\left| {Vu} \right|} \right)/{\mu ^{p + 1}}d\mu }\\ && \leqslant c\frac{1} {{{{\left| {Vu} \right|}^{{\alpha _2}}}}}\phi \left( {6{N_0}\left| {Vu} \right|} \right)\int_0^{3\left| {Vu} \right|} {{\mu ^{{\alpha _2}}}/{\mu ^{p + 1}}d\mu } \\ && \leqslant c\frac{1} {{{{\left| {Vu} \right|}^p}}}\phi \left( {6{N_0}\left| {Vu} \right|} \right). \end{eqnarray*} |
Note that 1 < p < \alpha_2 must also be required in the above integral calculation process. Therefore, from the above analysis and (2.4), we observe that
\begin{eqnarray} \begin{aligned} {I_3} &\leqslant c\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {6{N_0}\left| {Vu} \right|} \right)} dz \\ & \leqslant cN_0^{{\alpha _1}}\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| {Vu} \right|} \right)} dz, \end{aligned} \end{eqnarray} | (4.11) |
where the constant c is independent of \varepsilon, \; N_0 .
By applying Fubini's theorem, integration by parts and (2.5), I_4 becomes
\begin{eqnarray*} \begin{aligned} {I_4} & = \int_0^{ + \infty } {\frac{1} {{{\mu ^p}}}\left\{ {\int_{\{ z \in {\Bbb G} \times (0, + \infty ):\;\left| f \right| > \frac{{\varepsilon \mu }} {3}\} } {{{\left| f \right|}^p}dz} } \right\}} d\left[ {\phi (2{N_0}\mu )} \right]\\ & = \int_{{\Bbb G} \times (0, + \infty )} {{{\left| f \right|}^p}\left( {\int_0^{\frac{{3 \left| f \right|}} {\varepsilon}} {\frac{{d\left[ {\phi (2{N_0}\mu )} \right]}} {{{\mu ^p}}}} } \right)} dz\\ & = \frac{{{\varepsilon ^p}}} {{{3^p}}}\int_{{\Bbb G} \times (0, + \infty )} {\phi \left( {\frac{{6{N_0}\left| f \right|}} {\varepsilon }} \right)} dz + p\int_{{\Bbb G} \times (0, + \infty )} {{{\left| f \right|}^p}\left( {\int_0^{\frac{{3 \left| f \right|}} {\varepsilon}} {\frac{{ {\phi (2{N_0}\mu )} }} {{{\mu ^p}}}d\mu } } \right)} dz. \end{aligned} \end{eqnarray*} |
Setting {\theta _2} = \frac{{\varepsilon \mu }}{{3\left| f \right|}} , then 0 < {\theta _2} < 1. It follows from (2.5) that
\begin{eqnarray*} \begin{aligned} \phi \left( {2{N_0}\mu } \right) & = \phi \left( {\frac{{\varepsilon \mu }} {{3\left| f \right|}} \cdot \frac{{6{N_0}\left| f \right|}} {\varepsilon }} \right)\\ &\leqslant \frac{{2a{\varepsilon ^{{\alpha _2}}}}} {{{3^{{\alpha _2}}}}}\frac{1} {{{{\left| f \right|}^{{\alpha _2}}}}}\phi \left( {\frac{{6{N_0}\left| f \right|}} {\varepsilon }} \right). \end{aligned} \end{eqnarray*} |
By the above inequality, we obtain
\begin{eqnarray*} &&\int_{{\Bbb G} \times (0, + \infty )} {{{\left| f \right|}^p}\left( {\int_0^{\frac{{3 \left| f \right|}} {\varepsilon}} {\frac{{ {\phi (2{N_0}\mu )} }} {{{\mu ^p}}}d\mu } } \right)} dz\\ &&\leqslant \frac{{2a{\varepsilon ^{{\alpha _2}}}}} {{{3^{{\alpha _2}}}}}\int_{{\Bbb G} \times (0, + \infty )} {{{\left| f \right|}^{p - {\alpha _2}}}} \phi \left( {\frac{{6{N_0}\left| f \right|}} {\varepsilon }} \right)\left( {\int_0^{\frac{{3 \left| f \right|}} {\varepsilon}} {\frac{{{\mu ^{{\alpha _2}}}}} {{{\mu ^{p + 1}}}}d\mu } } \right)dz\\ && = \frac{{2a}\varepsilon^p} {{{3^p}({\alpha _2} - p)}}\int_{{\Bbb G} \times (0, + \infty )} {\phi \left( {\frac{{6{N_0}\left| f \right|}} {\varepsilon }} \right)} dz. \end{eqnarray*} |
Additionally, using (2.4), we get
\begin{eqnarray} \begin{aligned} {I_4} &\leqslant c{\varepsilon ^p}\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\frac{{6{N_0}\left| f \right|}} {\varepsilon }} \right)} dz \\ &\leqslant c{\varepsilon ^p}\int_{{\Bbb G} \times (0, +\infty )} {K{{\left( {\frac{{6{N_0}}} {\varepsilon }} \right)}^{{\alpha _1}}}\phi \left( {\left| f \right|} \right)} dz \\ &\leqslant c\frac{1} {{{\varepsilon ^{{\alpha _1} - p}}}}N_0^{{\alpha _1}}\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| f \right|} \right)} dz, \end{aligned} \end{eqnarray} | (4.12) |
where the constant c is independent of \varepsilon, \; N_0 .
Therefore, from (4.11) and (4.12) we obtain
\begin{eqnarray*} \begin{aligned} \int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| {Vu} \right|} \right)} dz &\leqslant c\left( {\frac{1} {{N_0^{q - {\alpha _1}}}} + {\varepsilon ^p}N_0^{{\alpha _1} - p}} \right)\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| {Vu} \right|} \right)} dz\\ &\quad + c\frac{1} {{{\varepsilon ^{{\alpha _1}}}}}\left( {\frac{1} {{N_0^{q - {\alpha _1}}}} + {\varepsilon ^p}N_0^{{\alpha _1} - p}} \right)\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| f \right|} \right)} dz\\ &\leqslant c\left( {{\varepsilon ^{\frac{{(q - {\alpha _1})(p - 1)}} {{({\alpha _1} - p)}}}} + \varepsilon } \right)\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| {Vu} \right|} \right)} dz\\ &\quad + c\frac{1} {{{\varepsilon ^{{\alpha _1}}}}}\left( {{\varepsilon ^{\frac{{(q - {\alpha _1})(p - 1)}} {{({\alpha _1} - p)}}}} + \varepsilon } \right)\int_{{\Bbb G} \times (0, +\infty )} {\phi \left( {\left| f \right|} \right)} dz, \end{aligned} \end{eqnarray*} |
where the constant c > 0 is independent of \varepsilon . Finally, using 1 < p < {\alpha _2} < {\alpha _1} < q and choosing a suitable \varepsilon > 0 such that
c\left( {{\varepsilon ^{\frac{{(q - {\alpha _1})(p - 1)}} {{({\alpha _1} - p)}}}} + \varepsilon } \right) \leqslant \frac{1} {2}, |
we obtain (1.4). This completes our proof.
Proof of Corollary 3: For u \in W_{\phi, 0}^{1, 2}({\Bbb G} \times (0, \infty)) , according to Definition 11, there exists a sequence of \{u_k\} of functions in C_0^\infty ({\Bbb G} \times (0, \infty)) such that
{\left\| {{u_k} - u} \right\|_{W_\phi ^{1, 2}({\Bbb G} \times (0, \infty ))}} + {\left\| {V({u_k} - u)} \right\|_{{L^\phi }({\Bbb G} \times (0, \infty ))}} \to 0, \quad k \to \infty. |
Therefore, from the above formula, Theorem 1, the convexity and monotonicity of \varphi , and (2.4) and (2.5), Corollary 3 is immediately proved. We complete the proof of Corollary 3.
In this paper, we study the regularity estimates in Orlicz space for the parabolic Schrödinger operator L = {\partial _t} - {\vartriangle _X} + V on nilpotent Lie groups. There are many essential differences between partial differential operators on nilpotent Lie groups and partial differential operators on Euclidean space. For example, the sub-Laplace operator {\Delta _X} = \sum\limits_{i = 1}^m {X_i^2} on a nilpotent Lie group is a degenerate elliptic operator, while the Laplace operator \Delta = \sum\limits_{i = 1}^m {\frac{{{\partial ^2}}}{{\partial x_i^2}}} in Euclidean space is a uniformly elliptic operator. Acerbi and Mingione [28] invented a new domain decomposition approach, which is completely free from harmonic analysis. Wang et al. [22,23,29] simplified and improved this approach, and obtained Orlicz estimates for some operators in Euclidean space. We extend the method of [22,23] to nilpotent Lie groups, and in order to generalize the condition V\in RH_{\infty} to the condition V \in RH_q , we have appropriately improved the domain decomposition method and the measure estimation of level sets in [22,23]. By using this approach, we obtain the Orlicz estimates for the parabolic Schrödinger operator with non-negative potentials on a nilpotent Lie groups, which extend the L^p estimates in [26]. Because this method needs to rely on the estimate of the metric sphere measure, this method is applicable to the Heisenberg group, Carnot group, etc, but it may not be suitable for the Hörmander's vector fields.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The author wishes to thank the anonymous referees for offering valuable suggestions to improve the expressions. The author would like to thank Professor Pengcheng Niu for his insightful guidance and earnest help about regularity theory. This work was supported by the Guangxi Natural Science Foundation (Grant No. 2017GXNSFBA198130), and Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS202134).
The author declares that there is no conflicts of interest regarding the publication of this paper.
[1] | W. Orlicz, \ddot{U}eber eine gewisse klasse von r\ddot{a}umen vom typus B, Bull. Int. Acad. Pol. Ser. A, 8 (1932), 207–220. |
[2] |
L. Wang, F. Yao, Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces, J. Funct. Anal., 262 (2012), 3495–3517. http://doi.org/10.1016/j.jfa.2012.01.016 doi: 10.1016/j.jfa.2012.01.016
![]() |
[3] |
S. Byun, F. Yao, S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, J. Funct. Anal., 255 (2008), 1851–1873. http://doi.org/10.1016/j.jfa.2008.09.007 doi: 10.1016/j.jfa.2008.09.007
![]() |
[4] |
F. Yao, Regularity estimates in weighted Orlicz spaces for Calder\acute{o}n-Zygmund type singular integral operators, Forum Math., 29 (2017), 187–199. https://doi.org/10.1515/forum-2015-0086 doi: 10.1515/forum-2015-0086
![]() |
[5] |
A. Salort, H. Vivas, Fractional eigenvalues in Orlicz spaces with no {\Delta _2} condition, J. Differ. Equations, 327 (2022), 166–188. https://doi.org/10.1016/j.jde.2022.04.029 doi: 10.1016/j.jde.2022.04.029
![]() |
[6] |
V. S. Guliyev, M. N. Omarova, M. A. Ragusa, A. Scapellato, Regularity of solutions of elliptic equations in divergence form in modified local generalized Morrey spaces, Anal. Math. Phys., 11 (2021), 13. http://doi.org/10.1007/s13324-020-00433-9 doi: 10.1007/s13324-020-00433-9
![]() |
[7] |
V. S. Guliyev, I. Ekincioglu, A. Ahmadli, M. N. Omarova, Global regularity in Orlicz-Morrey spaces of solutions to parabolic equations with VMO coefficients, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1963–1989. http://doi.org/10.1007/s11868-019-00325-y doi: 10.1007/s11868-019-00325-y
![]() |
[8] |
A. Abdalmonem, A. Scapellato, Intrinsic square functions and commutators on Morrey-Herz spaces with variable exponents, Math. Method. Appl. Sci., 44 (2021), 12408–12425. https://doi.org/10.1002/mma.7487 doi: 10.1002/mma.7487
![]() |
[9] |
F. Deringoz, V. S. Guliyev, M. N. Omarova, M. A. Ragusa, Calderon-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces, B. Math. Sci., 13 (2023), 2250004. http://doi.org/10.1142/S1664360722500047 doi: 10.1142/S1664360722500047
![]() |
[10] |
D. Yang, S. Yang, Musielak-Orlicz-Hardy spaces associated with operators and their applications, J. Geom. Anal., 24 (2014), 495–570. http://doi.org/10.1007/s12220-012-9344-y doi: 10.1007/s12220-012-9344-y
![]() |
[11] | Y. Tong, X. Wang, J. Gu, {L^\phi }-type estimates for very weak solutions of A-harmonic equation in Orlicz spaces, Acta Math. Sci. Ser. A, 40 (2020), 1461–1480. |
[12] | H. Tian, S. Zheng, Orlicz estimates for general parabolic obstacle problems with p(t, x)-growth in Reifenberg domains, Electron. J. Differ. Eq., 2020 (2020), 1–25. |
[13] |
N. Cheemaa, A. R. Seadawy, S. Chen, More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics, Eur. Phys. J. Plus, 133 (2018), 547. http://doi.org/10.1140/epjp/i2018-12354-9 doi: 10.1140/epjp/i2018-12354-9
![]() |
[14] |
A. Seadawy, Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations, Appl. Math. Inf. Sci., 10 (2016), 209–214. http://doi.org/10.18576/amis/100120 doi: 10.18576/amis/100120
![]() |
[15] |
M. Arshad, A. Seadawy, D. Lu, J. Wang, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations, Results Phys., 6 (2016), 1136–1145. http://doi.org/10.1016/j.rinp.2016.11.043 doi: 10.1016/j.rinp.2016.11.043
![]() |
[16] |
A. Seadawy, D. Kumarc, K. Hosseinie, F. Samadani, The system of equations for the ion sound and Langmuir waves and its new exact solutions, Results Phys., 9 (2018), 1631–1634. https://doi.org/10.1016/j.rinp.2018.04.064 doi: 10.1016/j.rinp.2018.04.064
![]() |
[17] |
A. Seadawy, D. Lu, M. Iqbal, Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves, Pramana-J. Phys., 93 (2019), 10. https://doi.org/10.1007/s12043-019-1771-x doi: 10.1007/s12043-019-1771-x
![]() |
[18] |
Y. Özkan, E. Yasşar, A. Seadawy, On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan-Kundu-Lakshmanan equation, Phys. Scr., 95 (2020), 085205. https://doi.org/10.1088/1402-4896/ab9af4 doi: 10.1088/1402-4896/ab9af4
![]() |
[19] |
Z. Shen, On the Neumann problem for Schrödinger operators in Lipschitz domains, Indiana Univ. Math. J., 43 (1994), 143–176. https://doi.org/10.1512/iumj.1994.43.43007 doi: 10.1512/iumj.1994.43.43007
![]() |
[20] |
Z. Shen, L^p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, 45 (1995), 513–546. https://doi.org/10.5802/aif.1463 doi: 10.5802/aif.1463
![]() |
[21] |
M. Bramanti, L. Brandolini, E. Harboure, B. Viviani, Global W^{2, p} estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition, Annali di Matematica, 191 (2012), 339–362. http://doi.org/10.1007/s10231-011-0186-1 doi: 10.1007/s10231-011-0186-1
![]() |
[22] |
F. Yao, Optimal regularity for Schrödinger equations, Nonlinear Anal. Theor., 71 (2009), 5144–5150. http://doi.org/10.1016/j.na.2009.03.081 doi: 10.1016/j.na.2009.03.081
![]() |
[23] |
F. Yao, Optimal regularity for parabolic Schrödinger operators, Commun. Pur. Appl. Anal., 12 (2013), 1407–1414. http://doi.org/10.3934/cpaa.2013.12.1407 doi: 10.3934/cpaa.2013.12.1407
![]() |
[24] |
F. Yao, Regularity theory for the uniformly elliptic operators in Orlicz spaces, Comput. Math. Appl., 60 (2010), 3908–3104. http://doi.org/10.1016/j.camwa.2010.10.011 doi: 10.1016/j.camwa.2010.10.011
![]() |
[25] |
H. Li, Estimations L^p des op érateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., 161 (1999), 152–218. https://doi.org/10.1006/jfan.1998.3347 doi: 10.1006/jfan.1998.3347
![]() |
[26] |
Y. Liu, J. Huang, J. Dong, An estimate on the heat kernel of Schrödinger operators with non-negative potentials on nilpotent Lie groups and its applications, Forum Math., 27 (2015), 1773–1798. http://doi.org/10.1515/forum-2012-0141 doi: 10.1515/forum-2012-0141
![]() |
[27] |
L. Yang, P. Li, Boundedness and compactness of commutators related with Schrödinger operators on Heisenberg groups, J. Pseudo-Differ. Oper. Appl., 14 (2023), 8. https://doi.org/10.1007/s11868-022-00504-4 doi: 10.1007/s11868-022-00504-4
![]() |
[28] |
E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. http://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8
![]() |
[29] |
L. Wang, F. Yao, S. Zhou, H. Jia, Optimal regularity for the Poisson equation, P. Am. Math. Soc., 137 (2009), 2037–2047. http://doi.org/10.1090/S0002-9939-09-09805-0 doi: 10.1090/S0002-9939-09-09805-0
![]() |
[30] | N. T. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 1 Eds., Cambridge: Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511662485 |
[31] |
L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. http://doi.org/10.1007/bf02392081 doi: 10.1007/bf02392081
![]() |
[32] |
A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields Ⅰ: basic properties, Acta Math., 155 (1985), 130–147. http://doi.org/10.1007/BF02392539 doi: 10.1007/BF02392539
![]() |
[33] | M. Rao, Z. Ren, Applications of Orlicz spaces, 1 Eds., Boca Raton: CRC Press, 2002. https://doi.org/10.1201/9780203910863 |
[34] | M. A. Krasnoselskii, Y. B. Rutickii, Convex functions and Orlicz spaces, 1 Eds., Groningen: Noordhoff, 1961. |
[35] |
H. Jia, D. Li, L. Wang, Regularity theorey in Orlicz spaces for elliptic equations in Reifenberg domains, J. Math. Anal. Appl., 334 (2007), 804–817. http://doi.org/10.1016/j.jmaa.2006.12.081 doi: 10.1016/j.jmaa.2006.12.081
![]() |
[36] |
S. Byun, S. Ryu, Gradient estimates for higher order elliptic equations on nonsmooth domains, J. Differ. Equations, 250 (2011), 243–263. http://doi.org/10.1016/j.jde.2010.10.001 doi: 10.1016/j.jde.2010.10.001
![]() |
[37] | R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, 1 Eds., Berlin: Springer-Verlag, 1971. http://doi.org/10.1007/BFb0058946 |
[38] | O. Strömberg, A. Torchinsky, Weighted hardy spaces, 1 Eds., Heidelberg: Springer, 1989. http://doi.org/10.1007/BFb0091154 |
[39] |
S. Buckley, P. Koskela, G. Lu, Subelliptic poincaré inequalities: the case p < 1, Publ. Mat., 39 (1995), 313–334. http://doi.org/10.5565/PUBLMAT_39295_08 doi: 10.5565/PUBLMAT_39295_08
![]() |