In this paper, we study the Orlicz estimates for the parabolic Schrödinger operator
$ L = {\partial _t} - {\Delta _X} + V, $
where the nonnegative potential $ V $ belongs to a reverse Hölder class on nilpotent Lie groups $ {\Bbb G} $ and $ {\Delta _X} $ is the sub-Laplace operator on $ {\Bbb G} $. Under appropriate growth conditions of the Young function, we obtain the regularity estimates of the operator $ L $ in the Orlicz space by using the domain decomposition method. Our results generalize some existing ones of the $ L^{p} $ estimates.
Citation: Kelei Zhang. Orlicz estimates for parabolic Schrödinger operators with non-negative potentials on nilpotent Lie groups[J]. AIMS Mathematics, 2023, 8(8): 18631-18648. doi: 10.3934/math.2023949
In this paper, we study the Orlicz estimates for the parabolic Schrödinger operator
$ L = {\partial _t} - {\Delta _X} + V, $
where the nonnegative potential $ V $ belongs to a reverse Hölder class on nilpotent Lie groups $ {\Bbb G} $ and $ {\Delta _X} $ is the sub-Laplace operator on $ {\Bbb G} $. Under appropriate growth conditions of the Young function, we obtain the regularity estimates of the operator $ L $ in the Orlicz space by using the domain decomposition method. Our results generalize some existing ones of the $ L^{p} $ estimates.
[1] | W. Orlicz, $\ddot{U}$eber eine gewisse klasse von r$\ddot{a}$umen vom typus B, Bull. Int. Acad. Pol. Ser. A, 8 (1932), 207–220. |
[2] | L. Wang, F. Yao, Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces, J. Funct. Anal., 262 (2012), 3495–3517. http://doi.org/10.1016/j.jfa.2012.01.016 doi: 10.1016/j.jfa.2012.01.016 |
[3] | S. Byun, F. Yao, S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, J. Funct. Anal., 255 (2008), 1851–1873. http://doi.org/10.1016/j.jfa.2008.09.007 doi: 10.1016/j.jfa.2008.09.007 |
[4] | F. Yao, Regularity estimates in weighted Orlicz spaces for Calder$\acute{o}$n-Zygmund type singular integral operators, Forum Math., 29 (2017), 187–199. https://doi.org/10.1515/forum-2015-0086 doi: 10.1515/forum-2015-0086 |
[5] | A. Salort, H. Vivas, Fractional eigenvalues in Orlicz spaces with no ${\Delta _2}$ condition, J. Differ. Equations, 327 (2022), 166–188. https://doi.org/10.1016/j.jde.2022.04.029 doi: 10.1016/j.jde.2022.04.029 |
[6] | V. S. Guliyev, M. N. Omarova, M. A. Ragusa, A. Scapellato, Regularity of solutions of elliptic equations in divergence form in modified local generalized Morrey spaces, Anal. Math. Phys., 11 (2021), 13. http://doi.org/10.1007/s13324-020-00433-9 doi: 10.1007/s13324-020-00433-9 |
[7] | V. S. Guliyev, I. Ekincioglu, A. Ahmadli, M. N. Omarova, Global regularity in Orlicz-Morrey spaces of solutions to parabolic equations with VMO coefficients, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1963–1989. http://doi.org/10.1007/s11868-019-00325-y doi: 10.1007/s11868-019-00325-y |
[8] | A. Abdalmonem, A. Scapellato, Intrinsic square functions and commutators on Morrey-Herz spaces with variable exponents, Math. Method. Appl. Sci., 44 (2021), 12408–12425. https://doi.org/10.1002/mma.7487 doi: 10.1002/mma.7487 |
[9] | F. Deringoz, V. S. Guliyev, M. N. Omarova, M. A. Ragusa, Calderon-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces, B. Math. Sci., 13 (2023), 2250004. http://doi.org/10.1142/S1664360722500047 doi: 10.1142/S1664360722500047 |
[10] | D. Yang, S. Yang, Musielak-Orlicz-Hardy spaces associated with operators and their applications, J. Geom. Anal., 24 (2014), 495–570. http://doi.org/10.1007/s12220-012-9344-y doi: 10.1007/s12220-012-9344-y |
[11] | Y. Tong, X. Wang, J. Gu, ${L^\phi }$-type estimates for very weak solutions of A-harmonic equation in Orlicz spaces, Acta Math. Sci. Ser. A, 40 (2020), 1461–1480. |
[12] | H. Tian, S. Zheng, Orlicz estimates for general parabolic obstacle problems with $p(t, x)$-growth in Reifenberg domains, Electron. J. Differ. Eq., 2020 (2020), 1–25. |
[13] | N. Cheemaa, A. R. Seadawy, S. Chen, More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics, Eur. Phys. J. Plus, 133 (2018), 547. http://doi.org/10.1140/epjp/i2018-12354-9 doi: 10.1140/epjp/i2018-12354-9 |
[14] | A. Seadawy, Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations, Appl. Math. Inf. Sci., 10 (2016), 209–214. http://doi.org/10.18576/amis/100120 doi: 10.18576/amis/100120 |
[15] | M. Arshad, A. Seadawy, D. Lu, J. Wang, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations, Results Phys., 6 (2016), 1136–1145. http://doi.org/10.1016/j.rinp.2016.11.043 doi: 10.1016/j.rinp.2016.11.043 |
[16] | A. Seadawy, D. Kumarc, K. Hosseinie, F. Samadani, The system of equations for the ion sound and Langmuir waves and its new exact solutions, Results Phys., 9 (2018), 1631–1634. https://doi.org/10.1016/j.rinp.2018.04.064 doi: 10.1016/j.rinp.2018.04.064 |
[17] | A. Seadawy, D. Lu, M. Iqbal, Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves, Pramana-J. Phys., 93 (2019), 10. https://doi.org/10.1007/s12043-019-1771-x doi: 10.1007/s12043-019-1771-x |
[18] | Y. Özkan, E. Yasşar, A. Seadawy, On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan-Kundu-Lakshmanan equation, Phys. Scr., 95 (2020), 085205. https://doi.org/10.1088/1402-4896/ab9af4 doi: 10.1088/1402-4896/ab9af4 |
[19] | Z. Shen, On the Neumann problem for Schrödinger operators in Lipschitz domains, Indiana Univ. Math. J., 43 (1994), 143–176. https://doi.org/10.1512/iumj.1994.43.43007 doi: 10.1512/iumj.1994.43.43007 |
[20] | Z. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, 45 (1995), 513–546. https://doi.org/10.5802/aif.1463 doi: 10.5802/aif.1463 |
[21] | M. Bramanti, L. Brandolini, E. Harboure, B. Viviani, Global $W^{2, p}$ estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition, Annali di Matematica, 191 (2012), 339–362. http://doi.org/10.1007/s10231-011-0186-1 doi: 10.1007/s10231-011-0186-1 |
[22] | F. Yao, Optimal regularity for Schrödinger equations, Nonlinear Anal. Theor., 71 (2009), 5144–5150. http://doi.org/10.1016/j.na.2009.03.081 doi: 10.1016/j.na.2009.03.081 |
[23] | F. Yao, Optimal regularity for parabolic Schrödinger operators, Commun. Pur. Appl. Anal., 12 (2013), 1407–1414. http://doi.org/10.3934/cpaa.2013.12.1407 doi: 10.3934/cpaa.2013.12.1407 |
[24] | F. Yao, Regularity theory for the uniformly elliptic operators in Orlicz spaces, Comput. Math. Appl., 60 (2010), 3908–3104. http://doi.org/10.1016/j.camwa.2010.10.011 doi: 10.1016/j.camwa.2010.10.011 |
[25] | H. Li, Estimations $L^p$ des op érateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., 161 (1999), 152–218. https://doi.org/10.1006/jfan.1998.3347 doi: 10.1006/jfan.1998.3347 |
[26] | Y. Liu, J. Huang, J. Dong, An estimate on the heat kernel of Schrödinger operators with non-negative potentials on nilpotent Lie groups and its applications, Forum Math., 27 (2015), 1773–1798. http://doi.org/10.1515/forum-2012-0141 doi: 10.1515/forum-2012-0141 |
[27] | L. Yang, P. Li, Boundedness and compactness of commutators related with Schrödinger operators on Heisenberg groups, J. Pseudo-Differ. Oper. Appl., 14 (2023), 8. https://doi.org/10.1007/s11868-022-00504-4 doi: 10.1007/s11868-022-00504-4 |
[28] | E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. http://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8 |
[29] | L. Wang, F. Yao, S. Zhou, H. Jia, Optimal regularity for the Poisson equation, P. Am. Math. Soc., 137 (2009), 2037–2047. http://doi.org/10.1090/S0002-9939-09-09805-0 doi: 10.1090/S0002-9939-09-09805-0 |
[30] | N. T. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 1 Eds., Cambridge: Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511662485 |
[31] | L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. http://doi.org/10.1007/bf02392081 doi: 10.1007/bf02392081 |
[32] | A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields Ⅰ: basic properties, Acta Math., 155 (1985), 130–147. http://doi.org/10.1007/BF02392539 doi: 10.1007/BF02392539 |
[33] | M. Rao, Z. Ren, Applications of Orlicz spaces, 1 Eds., Boca Raton: CRC Press, 2002. https://doi.org/10.1201/9780203910863 |
[34] | M. A. Krasnoselskii, Y. B. Rutickii, Convex functions and Orlicz spaces, 1 Eds., Groningen: Noordhoff, 1961. |
[35] | H. Jia, D. Li, L. Wang, Regularity theorey in Orlicz spaces for elliptic equations in Reifenberg domains, J. Math. Anal. Appl., 334 (2007), 804–817. http://doi.org/10.1016/j.jmaa.2006.12.081 doi: 10.1016/j.jmaa.2006.12.081 |
[36] | S. Byun, S. Ryu, Gradient estimates for higher order elliptic equations on nonsmooth domains, J. Differ. Equations, 250 (2011), 243–263. http://doi.org/10.1016/j.jde.2010.10.001 doi: 10.1016/j.jde.2010.10.001 |
[37] | R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, 1 Eds., Berlin: Springer-Verlag, 1971. http://doi.org/10.1007/BFb0058946 |
[38] | O. Strömberg, A. Torchinsky, Weighted hardy spaces, 1 Eds., Heidelberg: Springer, 1989. http://doi.org/10.1007/BFb0091154 |
[39] | S. Buckley, P. Koskela, G. Lu, Subelliptic poincaré inequalities: the case $p < 1$, Publ. Mat., 39 (1995), 313–334. http://doi.org/10.5565/PUBLMAT_39295_08 doi: 10.5565/PUBLMAT_39295_08 |