Research article

Orlicz mixed chord-integrals

  • Received: 02 July 2020 Accepted: 03 August 2020 Published: 25 August 2020
  • MSC : 46E30, 52A30, 52A40

  • In this paper, we introduce an affine geometric quantity and call it Orlicz mixed chord integral by defining a new Orlicz chord addition, which generalizes the mixed chord integrals to Orlicz space. The Minkoswki and Brunn-Minkowski inequalities for the Orlicz mixed chord integrals are established. The new inequalities in special cases yield $L_{p}$-Minkowski and Brunn-Minkowski inequalities for the chord integrals. The related concepts and inequalities of $L_{p}$-mixed chord integrals are derived. As an application, a new isoperimetric inequality for the chord integrals is given. As extensions, Orlicz multiple mixed chord integrals and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals are also derived here for the first time.

    Citation: Chang-Jian Zhao. Orlicz mixed chord-integrals[J]. AIMS Mathematics, 2020, 5(6): 6639-6656. doi: 10.3934/math.2020427

    Related Papers:

  • In this paper, we introduce an affine geometric quantity and call it Orlicz mixed chord integral by defining a new Orlicz chord addition, which generalizes the mixed chord integrals to Orlicz space. The Minkoswki and Brunn-Minkowski inequalities for the Orlicz mixed chord integrals are established. The new inequalities in special cases yield $L_{p}$-Minkowski and Brunn-Minkowski inequalities for the chord integrals. The related concepts and inequalities of $L_{p}$-mixed chord integrals are derived. As an application, a new isoperimetric inequality for the chord integrals is given. As extensions, Orlicz multiple mixed chord integrals and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals are also derived here for the first time.


    加载中


    [1] R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, New York, 1996.
    [2] G. Berck, Convexity of Lp-intersection bodies, Adv. Math., 222 (2009), 920-936. doi: 10.1016/j.aim.2009.05.009
    [3] Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.
    [4] C. Haberl, Lp intersection bodies, Adv. Math., 217 (2008), 2599-2624.
    [5] C. Haberl, M. Ludwig, A characterization of Lp intersection bodies, Int. Math. Res. Not., 2006 (2006), Art. ID 10548.
    [6] A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs 116, American Mathematical Society, Providence, RI, 2005.
    [7] M. Ludwig, Intersection bodies and valuations, Amer. J. Math., 128 (2006), 1409-1428. doi: 10.1353/ajm.2006.0046
    [8] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 3 (1990), 365-391.
    [9] E. M. Werner, Rényi divergence and Lp-affine surface area for convex bodies, Adv. Math., 230 (2012), 1040-1059. doi: 10.1016/j.aim.2012.03.015
    [10] E. Lutwak, Dual mixed volumes, Pacific J. Math., 58 (1975), 531-538. doi: 10.2140/pjm.1975.58.531
    [11] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math., 140 (1994), 435-447. doi: 10.2307/2118606
    [12] R. J. Gardner, A. Koldobsky, T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. Math., 149 (1999), 691-703. doi: 10.2307/120978
    [13] F. E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math., 219 (2008), 344-368. doi: 10.1016/j.aim.2008.05.001
    [14] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232-261. doi: 10.1016/0001-8708(88)90077-1
    [15] R. J. Gardner, D. Hug, W. Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differ. Geom., 97 (2014), 427-476. doi: 10.4310/jdg/1406033976
    [16] E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math., 223 (2010), 220-242. doi: 10.1016/j.aim.2009.08.002
    [17] E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies, J. Differ. Geom., 84 (2010), 365-387. doi: 10.4310/jdg/1274707317
    [18] D. Xi, H. Jin, G. Leng, The Orlicz Brunn-Minkwski inequality, Adv. Math., 260 (2014), 350-374. doi: 10.1016/j.aim.2014.02.036
    [19] B. He, Q. Huang, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom., 48 (2012), 281-297. doi: 10.1007/s00454-012-9434-4
    [20] C. Haberl, E. Lutwak, D. Yang, et al., The even Orlicz Minkowski problem, Adv. Math., 224 (2010), 2485-2510. doi: 10.1016/j.aim.2010.02.006
    [21] J. Li, D. Ma, Laplace transforms and valuations, J. Func. Anal., 272 (2017), 738-758. doi: 10.1016/j.jfa.2016.09.011
    [22] Y. Lin, Affine Orlicz Pólya-Szegö principle for log-concave functions, J. Func. Aanl., 273 (2017), 3295-3326. doi: 10.1016/j.jfa.2017.08.017
    [23] C. J. Zhao, On the Orlicz-Brunn-Minkowski theory, Balkan J. Geom. Appl., 22 (2017), 98-121.
    [24] C. J. Zhao, Orlicz dual mixed volumes, Results Math., 68 (2015), 93-104. doi: 10.1007/s00025-014-0424-0
    [25] C. J. Zhao, Orlicz dual affine quermassintegrals, Forum Math., 30 (2018), 929-945. doi: 10.1515/forum-2017-0174
    [26] C. J. Zhao, The dual logarithmic Aleksandrov-Fenchel inequality, Balkan J. Geom. Appl., 25 (2020), 157-169.
    [27] C. J. Zhao, Orlicz mixed affine surface areas, Balkan J. Geom. Appl., 24 (2019), 100-118.
    [28] C. J. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Func. Spaces, 2018 (2018), Ar. ID 9752178.
    [29] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second Edition, Cambridge Univ. Press, 2014.
    [30] F. Lu, Mixed chord-integrals of star bodies, J. Korean Math. Soc., 47 (2010), 277-288. doi: 10.4134/JKMS.2010.47.2.277
    [31] A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, I: Verall-gemeinerung einiger Begriffe der Theorie der konvexen Körper, Mat. Sbornik N. S., 2 (1937), 947-972.
    [32] W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid Selskab Mat-fys Medd, 16 (1938), 1-31.
    [33] E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differ. Geom., 38 (1993), 131-150. doi: 10.4310/jdg/1214454097
    [34] J. Hoffmann-Jφgensen, Probability With a View Toward Statistics, Vol. I, Chapman and Hall, New York, 1994.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2486) PDF downloads(147) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog