Citation: Chang-Jian Zhao. Orlicz mixed chord-integrals[J]. AIMS Mathematics, 2020, 5(6): 6639-6656. doi: 10.3934/math.2020427
[1] | R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, New York, 1996. |
[2] | G. Berck, Convexity of Lp-intersection bodies, Adv. Math., 222 (2009), 920-936. doi: 10.1016/j.aim.2009.05.009 |
[3] | Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988. |
[4] | C. Haberl, Lp intersection bodies, Adv. Math., 217 (2008), 2599-2624. |
[5] | C. Haberl, M. Ludwig, A characterization of Lp intersection bodies, Int. Math. Res. Not., 2006 (2006), Art. ID 10548. |
[6] | A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs 116, American Mathematical Society, Providence, RI, 2005. |
[7] | M. Ludwig, Intersection bodies and valuations, Amer. J. Math., 128 (2006), 1409-1428. doi: 10.1353/ajm.2006.0046 |
[8] | E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 3 (1990), 365-391. |
[9] | E. M. Werner, Rényi divergence and Lp-affine surface area for convex bodies, Adv. Math., 230 (2012), 1040-1059. doi: 10.1016/j.aim.2012.03.015 |
[10] | E. Lutwak, Dual mixed volumes, Pacific J. Math., 58 (1975), 531-538. doi: 10.2140/pjm.1975.58.531 |
[11] | R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math., 140 (1994), 435-447. doi: 10.2307/2118606 |
[12] | R. J. Gardner, A. Koldobsky, T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. Math., 149 (1999), 691-703. doi: 10.2307/120978 |
[13] | F. E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math., 219 (2008), 344-368. doi: 10.1016/j.aim.2008.05.001 |
[14] | E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232-261. doi: 10.1016/0001-8708(88)90077-1 |
[15] | R. J. Gardner, D. Hug, W. Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differ. Geom., 97 (2014), 427-476. doi: 10.4310/jdg/1406033976 |
[16] | E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math., 223 (2010), 220-242. doi: 10.1016/j.aim.2009.08.002 |
[17] | E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies, J. Differ. Geom., 84 (2010), 365-387. doi: 10.4310/jdg/1274707317 |
[18] | D. Xi, H. Jin, G. Leng, The Orlicz Brunn-Minkwski inequality, Adv. Math., 260 (2014), 350-374. doi: 10.1016/j.aim.2014.02.036 |
[19] | B. He, Q. Huang, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom., 48 (2012), 281-297. doi: 10.1007/s00454-012-9434-4 |
[20] | C. Haberl, E. Lutwak, D. Yang, et al., The even Orlicz Minkowski problem, Adv. Math., 224 (2010), 2485-2510. doi: 10.1016/j.aim.2010.02.006 |
[21] | J. Li, D. Ma, Laplace transforms and valuations, J. Func. Anal., 272 (2017), 738-758. doi: 10.1016/j.jfa.2016.09.011 |
[22] | Y. Lin, Affine Orlicz Pólya-Szegö principle for log-concave functions, J. Func. Aanl., 273 (2017), 3295-3326. doi: 10.1016/j.jfa.2017.08.017 |
[23] | C. J. Zhao, On the Orlicz-Brunn-Minkowski theory, Balkan J. Geom. Appl., 22 (2017), 98-121. |
[24] | C. J. Zhao, Orlicz dual mixed volumes, Results Math., 68 (2015), 93-104. doi: 10.1007/s00025-014-0424-0 |
[25] | C. J. Zhao, Orlicz dual affine quermassintegrals, Forum Math., 30 (2018), 929-945. doi: 10.1515/forum-2017-0174 |
[26] | C. J. Zhao, The dual logarithmic Aleksandrov-Fenchel inequality, Balkan J. Geom. Appl., 25 (2020), 157-169. |
[27] | C. J. Zhao, Orlicz mixed affine surface areas, Balkan J. Geom. Appl., 24 (2019), 100-118. |
[28] | C. J. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Func. Spaces, 2018 (2018), Ar. ID 9752178. |
[29] | R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second Edition, Cambridge Univ. Press, 2014. |
[30] | F. Lu, Mixed chord-integrals of star bodies, J. Korean Math. Soc., 47 (2010), 277-288. doi: 10.4134/JKMS.2010.47.2.277 |
[31] | A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, I: Verall-gemeinerung einiger Begriffe der Theorie der konvexen Körper, Mat. Sbornik N. S., 2 (1937), 947-972. |
[32] | W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid Selskab Mat-fys Medd, 16 (1938), 1-31. |
[33] | E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differ. Geom., 38 (1993), 131-150. doi: 10.4310/jdg/1214454097 |
[34] | J. Hoffmann-Jφgensen, Probability With a View Toward Statistics, Vol. I, Chapman and Hall, New York, 1994. |