Citation: Jian Liu. Further generalization of Walker’s inequality in acute triangles and its applications[J]. AIMS Mathematics, 2020, 5(6): 6657-6672. doi: 10.3934/math.2020428
[1] | C. Ciamberlini, Sulla condizione necessaria e sufficiente affinch un triangolo sia acutangolo, rettangolo oottusangolo, B. Unione Mat. Ital., 5 (1943), 37-41. |
[2] | A. W. Walker, Problem E2388, Am. Math. Mon., 79 (1972), 1135. |
[3] | D. S. Mitrinovic, J. E. Pečarić, V. Volence, Recent Advances in Geometric Inequalities, Contributions to Nonlinear Functional Analysis, Dordrecht, The Netherlands, Boston: Kluwer Academic Publishers, 1989. |
[4] | Y. D. Wu, Z. H. Zhang, Y. R. Zhang, Proving inequalities in acute triangle with difference substitution, Inequal. Pure Appl. Math., 8 (2007), Art. 81, 1-10. |
[5] | X. Z. Yang, An inequality for non-obtuse triangles, Middle School Math., 4 (1996), 30-32. (in Chinese) |
[6] | C. Shan. Geometric inequalities in China, In: S. L. Chen, Inequalities involving R, r and s in acute triangles, Nan Jing: Jiangsu Educational Publishing Press, 1996. |
[7] | J. Liu, Sharpened versions of the Erdös-Mordell inequality, J. Inequal. Appl., 206 (2015), 1-12. |
[8] | J. Liu, An improved result of a weighted trigonometric inequality in acute triangles with applications, J. Math. Inequal., 14 (2020), 147-160. |
[9] | J. Liu, An inequality involving geometric elments R, r and s in non-obtuse triangles, Teaching Mon., 7 (2010), 51-53. (in Chinese) |
[10] | W. J. Blundon, Inequalities associated with the triangle, Can. Math. Bull., 8 (1965), 615-626. doi: 10.4153/CMB-1965-044-9 |
[11] | S. H. Wu, A sharpened version of the fundamental triangle inequality, Math. Inequal. App., 11 (2008), 477-482. |
[12] | D. Andrica, C. Barbu, A geometric proof of Blundon's Inequalities, Math. Inequal. App., 15 (2012), 361-370. |
[13] | D. Andrica, C. Barbu, L. I. Piscoran, The geometric proof to a sharp version of Blundon's inequalities, J. Math. Inequal., 10 (2016), 1137-1143. |
[14] | S. H. Wu, Y. M. Chu, Geometric interpretation of Blundon's inequality and Ciamberlini's inequality, J. Inequal. Appl., 381 (2014), 1-18. |
[15] | O. Bottema, R. Z. Djordjević, R. R. Janić, et al. Geometic Ineqalities, Groningen: WoltersNoordhoff Press, 1969. |
[16] | J. Liu, Two new weighted Erdös-Mordell inequality, Discrete Comput Geom., 598 (2018), 707-724. |