Citation: Lining Tong, Li Chen, Simone Göttlich, Shu Wang. The global classical solution to compressible Euler system with velocity alignment[J]. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429
[1] | S. Benzoni-Gavage, D. Serre, Multi-Dimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications, Oxford University Press, 2007. |
[2] | J. A. Carrillo, Y. P. Choi, E. Tadmor, et al. Critical thresholds in 1D Euler equations with non-local forces, Math. Mod. Meth. Appl. S., 26 (2016), 185-206. doi: 10.1142/S0218202516500068 |
[3] | J. A. Carrillo, Y. P. Choi, E. Zatorska, On the pressureless damped Euler-Poisson equations with quadratic confinement: Critical thresholds and large-time behavior, Math. Mod. Meth. Appl. S., 26 (2016), 2311-2340. doi: 10.1142/S0218202516500548 |
[4] | J. A. Carrillo, E. Feireisl, P. Gwiazda, et al. Weak solutions for Euler systems with non-local interactions, J. Lond. Math. Soc., 95 (2017), 705-724. doi: 10.1112/jlms.12027 |
[5] | J. A. Carrillo, A. Wróblewska-Kamińska, E. Zatorska, On long-time asymptotics for viscous hydrodynamic models of collective behavior with damping and nonlocal interactions, Math. Mod. Meth. Appl. S., 29 (2019), 31-63. doi: 10.1142/S0218202519500027 |
[6] | J. Che, L. Chen, S. Göttlich, et al. Existence of a classical solution to complex material flow problems, Math. Method. Appl. Sci., 39 (2016), 4069-4081. doi: 10.1002/mma.3848 |
[7] | Y. P. Choi, The global Cauchy problem for compressible Euler equations with a nonlocal dissipation, Math. Mod. Meth. Appl. S., 29 (2019), 185-207. doi: 10.1142/S0218202519500064 |
[8] | E. DiBenedetto, Real Analysis, Birkhäuser, 2002. |
[9] | T. Do, A. Kiselev, L. Ryzhik, et al. Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37. doi: 10.1007/s00205-017-1184-2 |
[10] | I. Gasser, L. Hsiao, H. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differ. Equations, 192 (2003), 326-335. doi: 10.1016/S0022-0396(03)00122-0 |
[11] | S. Göttlich, A. Klar, S. Tiwari, Complex material flow problems: A multi-scale model hierarchy and particle methods, J. Eng. Math., 92 (2015), 15-29. doi: 10.1007/s10665-014-9767-5 |
[12] | S. Y. Ha, F. Huang, Y. Wang, A global unique solvability of entropic weak solution to the one-dimensional pressureless Euler system with a flocking dissipation, J. Differ. Equations, 257 (2014), 1333-1371. doi: 10.1016/j.jde.2014.05.007 |
[13] | S. Y. Ha, M. J. Kang, B. Kwon, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Mod. Meth. Appl. S., 24 (2014), 2311-2359. doi: 10.1142/S0218202514500225 |
[14] | S. Y. Ha, M. J. Kang, B. Kwon, Emergent Dynamics for the Hydrodynamic Cucker-Smale System in a Moving Domain, SIAM J. Math. Anal., 47 (2015), 3813-3831. doi: 10.1137/140984403 |
[15] | L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605. doi: 10.1007/BF02099268 |
[16] | F. Huang, P. Marcati, R. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24. doi: 10.1007/s00205-004-0349-y |
[17] | T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740 |
[18] | A. Kiselev, C. Tan, Global regularity for 1D Eulerian dynamics with singular interaction forces, SIAM J. Math. Anal., 50 (2018), 6208-6229. doi: 10.1137/17M1141515 |
[19] | P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, In: Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, Society for Indus trial and Applied Mathematics, Philadelphia, 1973, 1-48. |
[20] | E. H. Lieb, M. Loss, Analysis, American Mathematical Society, Providence, 2001. |
[21] | A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984. |
[22] | A. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002. |
[23] | A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto U., 20 (1980), 67-104. doi: 10.1215/kjm/1250522322 |
[24] | T. C. Sideris, B. Thomases, D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Part. Diff. Eq., 28 (2003), 795-816. doi: 10.1081/PDE-120020497 |
[25] | Z. Tan, Y. Wang, Global solution and large-time behavior of the 3D compressible Euler equations with damping, J. Differ. Equations, 254 (2013), 1686-1704. doi: 10.1016/j.jde.2012.10.026 |
[26] | W. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equations, 173 (2001), 410-450. doi: 10.1006/jdeq.2000.3937 |
[27] | T. Yang, C. Zhu, H. Zhao, Global smooth solutions for a class of quasilinear hyperbolic systems with dissipative terms, P. Roy. Soc. Edinb. A, 127 (1997), 1311-1324. doi: 10.1017/S0308210500027074 |