Citation: Sumaira Hafeez, Rashid Farooq. On energy ordering of vertex-disjoint bicyclic sidigraphs[J]. AIMS Mathematics, 2020, 5(6): 6693-6713. doi: 10.3934/math.2020430
[1] | Yinzhen Mei, Chengxiao Guo, Mengtian Liu . The bounds of the energy and Laplacian energy of chain graphs. AIMS Mathematics, 2021, 6(5): 4847-4859. doi: 10.3934/math.2021284 |
[2] | Nuttawoot Nupo, Sayan Panma . Certain structural properties for Cayley regularity graphs of semigroups and their theoretical applications. AIMS Mathematics, 2023, 8(7): 16228-16239. doi: 10.3934/math.2023830 |
[3] | Eleonora Amoroso, Giuseppina D'Aguì, Valeria Morabito . On a complete parametric Sturm-Liouville problem with sign changing coefficients. AIMS Mathematics, 2024, 9(3): 6499-6512. doi: 10.3934/math.2024316 |
[4] | Yan Wang, Kai Yuan, Ying Zhao . Perfect directed codes in Cayley digraphs. AIMS Mathematics, 2024, 9(9): 23878-23889. doi: 10.3934/math.20241160 |
[5] | Sizhong Zhou, Quanru Pan . The existence of subdigraphs with orthogonal factorizations in digraphs. AIMS Mathematics, 2021, 6(2): 1223-1233. doi: 10.3934/math.2021075 |
[6] | Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297 |
[7] | Andrea Ratto . Higher order energy functionals and the Chen-Maeta conjecture. AIMS Mathematics, 2020, 5(2): 1089-1104. doi: 10.3934/math.2020076 |
[8] | Yinzhen Mei, Chengxiao Guo . The minimal degree Kirchhoff index of bicyclic graphs. AIMS Mathematics, 2024, 9(7): 19822-19842. doi: 10.3934/math.2024968 |
[9] | Li Zhang, Maohua Ran, Hanyue Zhang . Energy analysis of the ADI-FDTD method with fourth-order accuracy in time for Maxwell's equations. AIMS Mathematics, 2023, 8(1): 264-284. doi: 10.3934/math.2023012 |
[10] | Xintian Pan . A high-accuracy conservative numerical scheme for the generalized nonlinear Schrödinger equation with wave operator. AIMS Mathematics, 2024, 9(10): 27388-27402. doi: 10.3934/math.20241330 |
If every arc of a digraph is assigned a weight +1 or −1 then it is called a signed digraph (henceforth, sidigraph). Each arc of a sidigraph is called a signed arc. We denote by uw, the arc from a vertex u to a vertex w. The sign of the arc uw is denoted by φ(u,w). A directed signed path Pn is a sidigraph on n vertices {wj∣j=1,2,…,n} with signed arcs {wjwj+1∣j=1,2,…,n−1}. A signed directed cycle Cn of order n≥2 is a sidigraph with vertices {wj∣j=1,2,…,n} and signed arcs {wjwj+1∣j=1,2,…,n−1}∪{wnw1}. The product of sign of the arcs of a sidigraph S is called the sign of S. A sidigraphs S is said to be a strongly connected sidigraph if for every pair of vertices v,w, a path from v to w and a path from w to v exist.
A sidigraph with equal number of vertices and arcs and contains only one directed cycle is said to be a unicyclic sidigraph. A sidigraph with connected underlying sigraph and has exactly two directed cycles is said to be bicyclic sidigraph. We denote a positive (respectively, negative) cycle of order n by Cn (respectively, Cn). A cycle of order n which is either positive or negative is denoted by Cn. A positive cycle is a cycle with positive sign and a negative cycle is a cycle with negative sign. We denote by Dsn, the class of vertex-disjoint bicyclic sidigraphs of a fixed order n.
Let S be an n-vertex sidigraphs. Then the adjacency matrix A(S)=[aij]n×n of S is given by:
aij={φ(wi,wj)if there is an arc from wi to wj, 0otherwise. |
The eigenvalues of A(S) are said to be the eigevalues of S.
Pe˜na and Rada [1] put forward the idea of digraph energy. Let ρ1,…,ρn are the eigenvalues of a sidigraph S. Pirzada and Bhat [2] defined the energy of a sidigraph S as E(S)=∑nk=1|Re(ρk)|, where Re(ρk) denotes the real value of the eigenvalue ρk. Khan et al. [3] and Farooq et al. [4] put forward the idea of iota energy of digraph (sidigraph) and defined iota energy as Ec(S)=∑nk=1|Im(ρk)|, where Im(ρk) denotes the imaginary value of the eigenvalue ρk. Khan et al. [5,6] found the extremal energy of digraphs and sidigraphs among all vertex-disjoint bicyclic digraphs and sidigraphs of order n. Farooq et al. [7,8] found the extremal iota energy of digraphs and sidigraphs among all vertex-disjoint bicyclic digraphs and sidigraphs of order n. In 2016, Monslave and Rada [9] investigated the general class of bicyclic digraphs and found extremal energy. Hafeez et al. [10] considered the class of all bicyclic sidigraphs and finds extremal energy.
Recently, Yang and Wang [11] determined the energy and iota ordering of digraphs in Dn and found the extremal energy and iota energy, where Dn is the class of vertex-disjoint bicyclic digraphs of order n. Yang and Wang [12] considered the problem of finding energy ordering in Dsn, where both directed cycles are of even length. Yang and Wang [13] also considered the problem of finding iota energy ordering in Dsn, where both directed cycles are of even length. Motivated by Yang and Wang [11,12,13], we consider the problem of finding the ordering of sidigraphs in Dsn with respect to energy and also investigate extremal energy of sidigraphs in this class, where Dsn is the class of vertex-disjoint bicyclic sidigraphs of order n. The results for the case, when both directed cycles are even are obtained in [12]. Therefore we have solved the remaining cases for energy ordering in Dsn.
Let p,q≥2 and Dsn[p,q] be the disjoint union of directed cycles Cp and Cq and Dsn[p,q] be the disjoint union of directed cycles Cp and Cq. Also suppose Dsn[p,q] denotes the disjoint union of directed cycles Cp and Cq and Dsn[p,q] denotes the disjoint union of directed cycles Cp and Cq and Dsn[p,q] denotes the disjoint union of directed cycles Cp and Cq. Let Dsn[p,q]={Dsn[p,q],Dsn[p,q],Dsn[p,q],Dsn[p,q]}.
Let S be a sidigraph with eigenvalues ρ1,…,ρn. Then energy of S is defined as E(S)=∑nk=1|Re(ρk)|, where Re(ρk) represents the real value of ρk.
Relationship between energy of strong components of a sidigraph S and energy of S is given in the following result.
Lemma 2.1 (Pirzada and Bhat [2]). Let Q1,…,Qk are strong components of a sidigraph S. Then E(S)=k∑j=1E(Qj).
Pirzada and Bhat [2] gave the following energy formulae for positive and negative directed cycles of order n≥2.
E(Cn)={2cotπnif n≡0(mod4)2cscπnif n≡2(mod4)cscπ2nif n≡1(mod2), | (2.1) |
E(Cn)={2cscπnif n≡0(mod4)2cotπnif n≡2(mod4)cscπ2nif n≡1(mod2). | (2.2) |
For any S∈Dsn, its strong components are: a sidigraph from the set Dsn[p,q] and few isolated vertices. Therefore using Lemma 2.1, we can only use the energy of strong components to find the energy ordering in Dsn.
Using Lemma 2.1, we give the following equations.
E(Dsn[p,q])=E(Cp)+E(Cq),E(Dsn[p,q])=E(Cp)+E(Cq),E(Dsn[p,q])=E(Cp)+E(Cq),E(Dsn[p,q])=E(Cp)+E(Cq). |
Let n>4. In Lemmas 2.2∼2.8, we give some results about the monotonicity of some functions which will be used to find the energy ordering of sidigraphs in Dsn.
Lemma 2.2 (Farooq et al. [7]). Suppose f(z)=2(cotπz+cotπn−z). For z∈[2,n2], f(z) is increasing and for z∈[n2,n−2], f(z) is decreasing.
Lemma 2.3 (Yang and Wang [11]). Let f(z)=2(cscπz+cotπn−z). For z∈[2,n−2], f(z) is decreasing.
Lemma 2.4 (Yang and Wang [11]). Suppose f(z)=2(cscπz+cscπn−z). For z∈[2,n2], f(z) is decreasing.
Lemma 2.5 (Farooq et al. [7]). Let f(z)=zsinπz. For z∈[2,∞), f(z) is increasing.
Lemma 2.6 (Yang and Wang [11]). Suppose f(z)=πz2cosπzcsc2πz. For z∈[2,n−2], f(z) is increasing.
The proof of next lemma is similar to the proof of Lemma 2.6 and is thus omitted.
Lemma 2.7. Suppose f(z)=πz2cosπ2zcsc2π2z and g(z)=πz2cosπzcsc2πz. For z∈[2,∞), f(z) and g(z) are increasing.
Now we prove the following results.
Lemma 2.8. Suppose f(z)=2(cotπz+cscπn−z). For z∈[2,n−2], f(z) is increasing.
Proof. To prove the result, we will show that for all z∈[2,n−2], f′(z)≥0.
Now
f′(z)=2(πz2csc2πz−π(n−z)2cscπn−zcotπn−z) | (2.3) |
To prove f′(z)≥0, we divide the interval in two parts. Firstly let z∈[n2,n−2]. Then z≥n−z. By Lemma 2.6, we know that for z∈[2,n−2], πz2cosπzcsc2πz is increasing. Therefore π(n−z)2cscπn−zcotπn−z=π(n−z)2csc2πn−zcosπn−z≤πz2csc2πzcosπz<πz2csc2πz. Hence using (2.3), f′(z)≥0 for z∈[n2,n−2].
Now let z∈[2,n2]. Then z≤n−z. By Lemma 2.5, we know that zsinπz is strictly increasing on [2,∞). We have zsinπz≤(n−z)sinπn−z. From this, we get 1zcscπn−z−1n−zcscπn−z≥0. Consider
πz2csc2πz−π(n−z)2csc2πn−z=π(1zcscπz+1n−zcscπn−z)(1zcscπz−1n−zcscπn−z). |
Clearly 1zcscπz+1n−zcscπn−z>0 and 1zcscπz−1n−zcscπn−z≥0. Hence πz2csc2πz−π(n−z)2csc2πn−z≥0. This implies that π(n−z)2cscπn−zcotπn−z=π(n−z)2cosπn−zcsc2πn−z<π(n−z)2csc2πn−z<πz2csc2πz. Hence using (2.3) and all these facts, f′(z)≥0 for z∈[2,n2]. Thus f′(z)≥0 for z∈[2,n−2]. This proves the result.
Lemma 2.9. Let z∈[2,n−2]. The following holds.
(1) Let f(z)=cscπ2z+cscπ2(n−z) is decreasing on [2,n2] and increasing on [n2,n−2].
(2) The function f(z)=2cscπz+cscπ2(n−z) is decreasing on [2,2n3] and increasing on [2n3,n−2].
(3) The function f(z)=cscπ2z+2cscπ(n−z) is decreasing on [2,n3] and increasing on [n3,n−2].
Proof. (1) To show that f(z) is decreasing on [2,n2], it is sufficient to show that f′(z)≤0.
Since z≤(n−z) for z∈[2,n2], therefore using Lemma 2.7, we get
f′(z)=π2z2csc2π2zcosπ2z−π2(n−z)2csc2π2(n−z)cosπ2(n−z)≤π2(n−z)2csc2π2(n−z)cosπ2(n−z)−π2(n−z)2csc2π2(n−z)cosπ2(n−z)=0 |
Hence f(z) is decreasing on [2,n2].
Now we will show that f′(z)≥0. Since z≥(n−z) for z∈[n2,n−2], therefore using Lemma 2.7, we obtain
f′(z)=π2z2csc2π2zcosπ2z−π2(n−z)2csc2π2(n−z)cosπ2(n−z)≥π2(n−z)2csc2π2(n−z)cosπ2(n−z)−π2(n−z)2csc2π2(n−z)cosπ2(n−z)=0 |
Hence f(z) is increasing on [n2,n−2].
(2) To show that f(z) is decreasing on [2,2n3], it is enough to prove that f′(z)≤0.
Since z≤2(n−z) for z∈[2,2n3], therefore using Lemma 2.7, we get
f′(z)=2πz2csc2πzcosπz−π2(n−z)2csc2π2(n−z)cosπ2(n−z)≤2π4(n−z)2csc2π2(n−z)cosπ2(n−z)−π2(n−z)2csc2π2(n−z)cosπ2(n−z)=0 |
Hence f(z) is decreasing on [2,2n3].
Now we will show that f′(z)≥0. Since z≥2(n−z) for z∈[2n3,n−2], therefore using Lemma 2.7, we obtain
f′(z)=2πz2csc2πzcosπz−π2(n−z)2csc2π2(n−z)cosπ2(n−z)≥2π4(n−z)2csc2π2(n−z)cosπ2(n−z)−π2(n−z)2csc2π2(n−z)cosπ2(n−z)=0 |
Hence f(z) is increasing on [2n3,n−2].
Analogously (3) can be proved.
Lemma 2.10. Suppose f(z)=2cotπz+cscπ2(n−z). For z∈[2,n−2], f(z) is increasing.
Proof. We will show that f′(z)≥0 for z∈[2,n−2].
Since cosπz≤1 and z≥2(n−z) for z∈[2n3,n−2], therefore by Lemma 2.7, we have
f′(z)=2πz2csc2πz−π2(n−z)2csc2π2(n−z)cosπ2(n−z)≥2πz2csc2πzcosπz−π2(n−z)2csc2π2(n−z)cosπ2(n−z)≥2π4(n−z)2csc2π2(n−z)cosπ2(n−z)−π2(n−z)2csc2π2(n−z)cosπ2(n−z)=0 |
Also −cosπz≥−1 and z≤2(n−z) for z∈[2,2n3], therefore by proof of Lemma 2.4 [7], we see that
f′(z)=2πz2csc2πz−π2(n−z)2csc2π2(n−z)cosπ2(n−z)≥2πz2csc2πz−π2(n−z)2csc2π2(n−z)≥0. |
Hence f(z) is increasing on [2,n−2].
Sidigraphs in Dsn are classified into three categories: the sidigraphs whose directed cycles are of even length, the sidigraphs whose directed cycles are of odd length and the sidigraphs whose one directed cycle is of even length and one is of odd length. Yang and Wang [12] investigated the energy ordering in first category where both cycles are of even length. Therefore in the following section, we separately investigate energy ordering in other two categories and find maximal energy.
Yang and Wang [12] investigated the energy ordering of bicyclic sidigraphs in Dsn, where each directed cycle is of even length. For details see [12].
Yang and Yang also proved the following theorem about the extremal energy of those bicyclic sidigraphs in the class Dsn whose both directed cycles are of even length.
Theorem 3.1 (Xang and Wang [12]). Suppose a sidigraph S∈Dsn has even directed cycles.
(i) For n≡0(mod4), the largest energy of S is obtained if S≅Dsn[2,n−2].
(ii) For n≡1(mod4), the largest energy of S is obtained if S≅Dsn[2,n−3].
(iii) For n≡2(mod4), the largest energy of S is obtained if S≅Dsn[2,n−2].
(iv) For n≡3(mod4), the largest energy of S is obtained if S≅Dsn[2,n−3].
(v) The smallest energy of S is obtained if S≅Dsn[2,2].
In this section, we find energy ordering of those bicyclic sidigraphs in Dsn that contain directed cycles of odd length. Note that for r≡1(mod2), E(Cr)=E(Cr). Hence we only consider the case when both directed cycles are positive.
Lemma 3.2. Let n>5 and n≡0(mod4). Take r∈[2,n−2] satisfying r≡1(mod2) and n−r≡1(mod2). Then E(Dsn[r,n−r]) has maximum value at r=3. Therefore the following energy ordering holds:
E(Dsn[3,n−3])>E(Dsn[5,n−5])>⋯>E(Dsn[n−22,n+22]). |
Proof. Using Eq (2.1), we get
E(Dsn[r,n−r])=cscπ2r+cscπ2(n−r). |
By Part (1) of Lemma 2.9, we see that cscπ2r+cscπ2(n−r) is decreasing on [2,n2] and increasing on [n2,n−2]. Therefore the smallest odd number in [2,n2] where E(Dsn[r,n−r]) has maximum value is r=3 and the largest odd number in [n2,n−2] where E(Dsn[r,n−r]) has maximum value is r=n−3. Thus we have
E(Dsn[3,n−3])>E(Dsn[5,n−5])>⋯>E(Dsn[n2−1,n2+1]). |
The proof is complete.
Similar to Lemma 3.2, the following result can be proved.
Lemma 3.3. Let n>5 and n≡2(mod4). Take r∈[2,n−2] satisfying r≡1(mod2) and n−r≡1(mod2). Then E(Dsn[r,n−r]) has maximum value at r=3. Therefore the following energy ordering holds:
E(Dsn[3,n−3])>E(Dsn[5,n−5])>⋯>E(Dsn[n2,n2]). |
Lemma 3.4. Let n>5 and n≡1(mod4). Take r∈[2,n−2] satisfying r≡1(mod2) and n−r−1≡1(mod2). Then E(Dsn[r,n−r−1]) has maximum value at r=3. Therefore the following energy ordering holds:
E(Dsn[3,n−4])>E(Dsn[5,n−6])>⋯>E(Dsn[n−32,n+12]). |
Proof. Since r≡1(mod2) and n≡1(mod4), therefore n−r−1≡(mod2). Using Eq (2.1), we have
E(Dsn[r,n−r−1]=cscπ2r+cscπ2(n−r−1). |
Hence by changing n to n−1 is Lemma 3.2, we get the desired result.
By changing n in Lemma 3.3 to n−1, the following result is obtained.
Lemma 3.5. Let n>5 and n≡3(mod4). Take r∈[2,n−2] satisfying r≡1(mod2) and n−r−1≡1(mod2). Then E(Dsn[r,n−r−1]) has maximum value at r=3. Therefore the following energy ordering holds:
E(Dsn[3,n−4])>E(Dsn[5,n−6])>⋯>E(Dsn[n−12,n−12]). |
Combining Lemmas 3.2 ∼ 3.5, the following corollary is obtained.
Corollary 3.6. Suppose r≡1(mod2) and n>5.
(i) If n≡0(mod2) then E(Dsn[3,n−3])≥E(Dsn[r,n−r]).
(ii) If n≡1(mod2) then E(Dsn[3,n−4])≥E(Dsn[r,n−r−1]).
Now we give the extremal energy of bicyclic sidigraphs in the class Dsn.
Theorem 3.7. Let S∈Dsn be a sidigraph with odd directed cycles.
(i) For n≡0(mod2), the maximal energy of S is attained if S≅Dsn[3,n−3].
(ii) For n≡1(mod2), the maximal energy of S is attained if S≅Dsn[3,n−4].
(iii) The minimal energy of S is attained if S≅Dsn[3,3].
Proof. The proof of Part (i) and (ii) follows from Corollary 3.6.
(iii). As for odd integers r1 and r2 with r1≥r2≥3, it holds that E(Cr1)≥E(Cr2). Hence the minimal energy of S is attained if S≅Dsn[3,3].
In next theorem, we give the energy ordering of those bicyclic sidigraphs in Dsn whose both directed cycles are of odd length.
Theorem 3.8. Let n>5 and r∈[2,n−2].
(i) If n≡0(mod4) then we have the following energy ordering:
E(Dsn[3,n−3])>E(Dsn[5,n−5])>⋯>E(Dsn[n−22,n+22])>E(Dsn[n−62,n+22])>⋯>E(Dsn[3,n+22])>E(Dsn[3,n−22])>E(Dsn[3,n−62])>⋯>E(Dsn[3,3]). |
(ii) If n≡1(mod4) then we have the following energy ordering:
E(Dsn[3,n−4])>E(Dsn[5,n−6])>⋯>E(Dsn[n−32,n+12])>E(Dsn[n−72,n+12])>⋯>E(Dsn[3,n+12])>E(Dsn[3,n−32])>E(Dsn[3,n−72])>⋯>E(Dsn[3,3]). |
(iii) If n≡2(mod4) then we have the following energy ordering:
E(Dsn[3,n−3])>E(Dsn[5,n−5])>⋯>E(Dsn[n2,n2])>E(Dsn[n−42,n2])>⋯>E(Dsn[3,n2])>E(Dsn[3,n−42])>E(Dsn[3,n−82])>⋯>E(Dsn[3,3]). |
(iv) If n≡3(mod4) then we have the following energy ordering:
E(Dsn[3,n−4])>E(Dsn[5,n−6])>⋯>E(Dsn[n−12,n−12])>E(Dsn[n−52,n−12])>⋯>E(Dsn[3,n−12])>E(Dsn[3,n−52])>E(Dsn[3,n−92])>⋯>E(Dsn[3,3]). |
Example 3.9. We illustrate Theorem 3.8 by considering sidigraphs of different order.
(i) Take n=12, that is, n≡0(mod4). Then
E(Dsn[5,n−5])=E(Dsn[n−22,n+22])=E(Dsn[5,7])=7.7300E(Dsn[3,n−3])=E(Dsn[3,9])=7.7588E(Dsn[n−62,n+22])=E(Dsn[3,5])=6.4940E(Dsn[3,n−22])=EE(Dsn[3,5])=5.2361E(Dsn[3,3])=4. |
It follows that
E(Dsn[3,9])>E(Dsn[5,7])>E(Dsn[3,5])>E(Dsn[3,3]). |
(ii) Take n=17, that is, n≡1(mod4). Then
E(Dsn[7,n−7])=E(Dsn[n−32,n+12])=E(Dsn[7,9])=10.2527E(Dsn[3,n−4])=E(Dsn[3,13])=10.2962E(Dsn[5,n−6])=E(Dsn[5,11])=10.2627E(Dsn[n−72,n+12])=E(Dsn[5,9])=8.9948E(Dsn[3,n+12])=E(Dsn[3,9])=7.7588E(Dsn[3,n−32])=E(Dsn[3,7])=6.4940E(Dsn[3,n−72])=E(Dsn[3,5])=5.2361E(Dsn[3,n−112])=E(Dsn[3,3])=4. |
Therefore we get,
E(Dsn[3,13])>E(Dsn[5,11])>E(Dsn[7,9])>E(Dsn[5,9])>E(Dsn[3,9])>E(Dsn[3,7])>E(Dsn[3,5])>E(Dsn[3,3]). |
(iii) Take n=14, that is, n≡2(mod4). Then
E(Dsn[7,n−7])=E(Dsn[n2,n2])=E(Dsn[7,7])=8.9879E(Dsn[n−82,n2])=E(Dsn[3,n2])=E(Dsn[3,7])=6.4940E(Dsn[3,n−3])=E(Dsn[3,11])=9.0267E(Dsn[5,n−5])=E(Dsn[5,9])=8.9948E(Dsn[n−42,n2])=E(Dsn[5,7])=7.7300E(Dsn[3,n−42])=E(Dsn[3,5])=5.2361E(Dsn[3,n−82])=E(Dsn[3,3])=4. |
Hence we get,
E(Dsn[3,11])>E(Dsn[5,9])>E(Dsn[7,7])>E(Dsn[5,7])>E(Dsn[3,7])>E(Dsn[3,5])>E(Dsn[3,3]). |
(iv) Taken=19, that is, n≡3(mod4). Then
E(Dsn[9,n−9]=E(Dsn[n−12,n−12])=E(Dsn[9,9])=11.5175E(Dsn[3,n−12])=E(Dsn[n−132,n−12])=E(Dsn[3,9])=7.7588E(Dsn[n−52,n−12])=E(Dsn[7,9])=10.2527E(Dsn[n−92,n−12])=E(Dsn[5,9])=8.9948E(Dsn[3,n−4])=E(Dsn[3,15])=11.5688E(Dsn[5,n−6])=E(Dsn[5,13])=11.5323E(Dsn[7,n−8])=E(Dsn[7,11])=11.5206E(Dsn[3,n−52])=E(Dsn[3,7])=6.4940E(Dsn[3,n−92])=E(Dsn[3,5])=5.2361E(Dsn[3,n−132])=E(Dsn[3,3])=4. |
Therefore, we obtain
E(Dsn[3,15])>E(Dsn[5,13])>E(Dsn[7,11])>E(Dsn[9,9])>E(Dsn[7,9])>E(Dsn[5,9])>E(Dsn[3,9])>E(Dsn[3,7])>E(Dsn[3,5])>E(Dsn[3,3]). |
In this section, we find energy ordering of those bicyclic sidigraphs in Dsn whose one directed cycle is of even length and one is of odd length. For n≡0(mod2), if r≡1(mod2) then n−r≡1(mod2) and if r≡0(mod2) then n−r≡0(mod2). So we only consider the case when n≡1(mod2). Note that for r≡0(mod2) and n−r≡1(mod2) then E(Dsn[r,n−r])=E(Dsn[r,n−r]). Hence we only have to give the energy ordering of those bicyclic sidigraphs in Dsn whose both directed cycles are positive or both directed cycles are negative. The proofs are similar to the proofs of Lemmas 3.2 ∼ 3.5 and thus omitted.
Now we give the energy ordering of those bicyclic sidigraphs in Dsn whose both directed cycles are positive.
Lemma 3.10. Suppose n>5, n≡0(mod3) and r∈[2,n−2] satisfying r≡0(mod2) and n−r≡1(mod2). Then we have the following energy ordering:
(i) Let r≡2(mod4).
(a) If r∈[2,2n3] then
E(Dsn[2,n−2])>E(Dsn[6,n−6])>⋯>E(Dsn[2n3,n3]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n3,n3]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n3,n3]). |
(ii) Let r≡0(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[4,n−4]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[4,n−4]). |
Lemma 3.11. Suppose n>5, n≡1(mod3) and r∈[2,n−2] satisfying r≡0(mod2) and n−r≡1(mod2). Then we have the following energy ordering:
(i) Let r≡2(mod4).
(a) If r∈[2,2n3] then
E(Dsn[2,n−2])>E(Dsn[6,n−6])>⋯>E(Dsn[2n−83,n+83]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+43,n−43]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+43,n−43]). |
(ii) Let r≡0(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[4,n−4]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[4,n−4]). |
Lemma 3.12. Suppose n>5, n≡2(mod3) and r∈[2,n−2] satisfying r≡0(mod2) and n−r≡1(mod2). Then we have the following energy ordering:
(i) Let r≡2(mod4).
(a) If r∈[2,2n3] then
E(Dsn[2,n−2])>E(Dsn[6,n−6])>⋯>E(Dsn[2n−43,n+43]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+83,n−83]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+83,n−83]). |
(ii) Let r≡0(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[4,n−4]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[4,n−4]). |
Now we give the energy ordering of those bicyclic sidigraphs in Dsn whose both directed cycles are negative.
Lemma 3.13. Suppose n>5, n≡0(mod3) and r∈[2,n−2] satisfying r≡0(mod2) and n−r≡1(mod2). Then we have the following energy ordering:
(i) Let r≡0(mod4).
(a) If r∈[2,2n3] then
E(Dsn[4,n−4])>E(Dsn[8,n−8])>⋯>E(Dsn[2n−63,n+63]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+63,n−63]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+63,n−63]). |
(ii) Let r≡2(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2,n−2]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2,n−2]). |
Lemma 3.14. Suppose n>5, n≡1(mod3) and r∈[2,n−2] satisfying r≡0(mod2) and n−r≡1(mod2). Then we have the following energy ordering:
(i) Let r≡0(mod4).
(a) If r∈[2,2n3] then
E(Dsn[4,n−4])>E(Dsn[8,n−8])>⋯>E(Dsn[2n−23,n+23]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+103,n−103]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+103,n−103]). |
(ii) Let r≡2(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2,n−2]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2,n−2]). |
Lemma 3.15. Suppose n>5, n≡2(mod3) and r∈[2,n−2] satisfying r≡0(mod2) and n−r≡1(mod2). Then we have the following energy ordering:
(i) Let r≡0(mod4).
(a) If r∈[2,2n3] then
E(Dsn[4,n−4])>E(Dsn[8,n−8])>⋯>E(Dsn[2n−103,n+103]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+23,n−23]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+23,n−23]). |
(ii) Let r≡2(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2,n−2]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2,n−2]). |
Now we give the extremal energy of bicyclic sidigraphs in the class Dsn.
Theorem 3.16. Let S∈Dsn be a sidigraph with one directed cycle of even length and one of odd length.
(i) For n≡1(mod2), the maximal energy of S is attained if S≅Dsn[2,n−2].
(ii) The minimal energy of S is attained if S≅Dsn[2,3].
Proof. (i). For proof, see Theorem 7 [5].
(ii). Since for odd integers r1 and r2 with r1≥r2≥3, it holds that E(Cr1)≥E(Cr2) and E(C2)=0. Hence the minimal energy of S is attained if S≅Dsn[2,3].
In next theorem, we give the energy ordering of those bicyclic sidigraphs in Dsn whose one directed cycle is of even length and one is of odd length.
Theorem 3.17. Let n is odd with n>5 and r∈[2,n−2].
(1) If n≡0(mod3) then we have the following energy ordering:
(i) Let r≡2(mod4).
(a) If r∈[2,2n3] then
E(Dsn[2,n−2])>E(Dsn[6,n−6])>⋯>E(Dsn[2n3,n3])>E(Dsn[2n−123,n3])>E(Dsn[2n−243,n3])>⋯>E(Dsn[2,n3])>E(Dsn[2,n−63])>E(Dsn[2,n−123])>⋯>E(Dsn[2,3]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n3,n3])>E(Dsn[2n3,n−63])>E(Dsn[2n3,n−123])>⋯>E(Dsn[2n3,3])>E(Dsn[2n−123,3])E(Dsn[2n−243,3])>⋯>E(Dsn[2,3]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n3,n3])>E(Dsn[2n−123,n3])>E(Dsn[2n−243,n3])>⋯>E(Dsn[2,n3])>E(Dsn[2,n−63])>E(Dsn[2,n−123])>⋯>E(Dsn[2,3]). |
(d) If n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2,n−2])>E(Dsn[2,n−4])>E(Dsn[2,n−6])>⋯>E(Dsn[2,3])>E(Dsn[2,2]). |
(e) If n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2,n−2])>E(Dsn[2,n−4])>E(Dsn[2,n−6])>⋯>E(Dsn[2,3])>E(Dsn[2,2]). |
(ii) Let r≡0(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[4,n−4])>E(Dsn[4,n−6])>E(Dsn[4,n−8])>E(Dsn[4,3])>E(Dsn[2,3]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,5])>⋯>E(Dsn[4,n−4])>E(Dsn[4,n−6])>E(Dsn[4,n−8])>E(Dsn[4,3])>E(Dsn[2,3]). |
(c) If r∈[2,2n3] then
E(Dsn[4,n−4])>E(Dsn[8,n−8])>⋯>E(Dsn[2n−63,n+63])>E(Dsn[2n−183,n+63])>E(Dsn[2n−303,n+63])>⋯>E(Dsn[4,n+63])>E(Dsn[4,n3])>E(Dsn[4,n−63])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(d) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+63,n−63])>E(Dsn[2n−63,n−63])>E(Dsn[2n−183,n−63])>⋯>E(Dsn[4,n−63])>E(Dsn[4,n−123])>E(Dsn[4,n−183])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(e) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+63,n−63])>E(Dsn[2n+63,n−123])>E(Dsn[2n+63,n−183])>⋯>E(Dsn[2n+63,3])>E(Dsn[2n−63,3])>E(Dsn[2n−183,3])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(2) If n≡1(mod3) then we have the following energy ordering:
(i) Let r≡2(mod4).
(a) If r∈[2,2n3] then
E(Dsn[2,n−2])>E(Dsn[6,n−6])>⋯>E(Dsn[2n−83,n+83])>E(Dsn[2n−203,n+83])>E(Dsn[2n−323,n+83])>⋯>E(Dsn[2,n+83])>E(Dsn[2,n+23])>E(Dsn[2,n−43])>⋯>E(Dsn[2,3]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+43,n−43])>E(Dsn[2n−83,n−43])>E(Dsn[2n−203,n−43])>⋯>E(Dsn[2,n−43])>E(Dsn[2,n−103])>E(Dsn[2,n−163])>⋯>E(Dsn[2,3]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+43,n−43])>E(Dsn[2n+43,n−103])>E(Dsn[2n+43,n−163])>⋯>E(Dsn[2n+43,3])>E(Dsn[2n−83,3])>E(Dsn[2n−203,3])>⋯>E(Dsn[2,3]). |
(d) If n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2,n−2])>E(Dsn[2,n−4])>E(Dsn[2,n−6])>⋯>E(Dsn[2,3]). |
(e) If n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2,n−2])>E(Dsn[2,n−4])>E(Dsn[2,n−6])>⋯>E(Dsn[2,3]). |
(ii) Let r≡0(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[4,n−4])>E(Dsn[4,n−6])>E(Dsn[4,n−8])>E(Dsn[4,3])>E(Dsn[2,3]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[4,n−4])>E(Dsn[4,n−6])>E(Dsn[4,n−8])>E(Dsn[4,3])>E(Dsn[2,3]). |
(c) If r∈[2,2n3] then
E(Dsn[4,n−4])>E(Dsn[8,n−8])>⋯>E(Dsn[2n−23,n+23])>E(Dsn[2n−143,n+23])>E(Dsn[2n−263,n+23])>⋯>E(Dsn[4,n+23])>E(Dsn[4,n−43])>E(Dsn[4,n−103])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(d) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+103,n−103])>E(Dsn[2n−23,n−103])>E(Dsn[2n−143,n−103])>⋯>E(Dsn[4,n−103])>E(Dsn[4,n−163])>E(Dsn[4,n−223])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(e) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+103,n−103])>E(Dsn[2n+103,n−163])>E(Dsn[2n+103,n−223])>E(Dsn[2n+103,3])>E(Dsn[2n−23,3])>E(Dsn[2n−143,3])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(3) If n≡2(mod3) then we have the following energy ordering:
(i) Let r≡2(mod4).
(a) If r∈[2,2n3] then
E(Dsn[2,n−2])>E(Dsn[6,n−6])>⋯>E(Dsn[2n−43,n+43])>E(Dsn[2n−163,n+43])>E(Dsn[2n−263,n+43])>⋯>E(Dsn[2,n+43])>E(Dsn[2,n−23])>E(Dsn[2,n−83])>E(Dsn[2,3]). |
(b) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+83,n−83])>E(Dsn[2n−43,n−83])>E(Dsn[2n−163,n−83])>⋯>E(Dsn[2,n−83])>E(Dsn[2,n−143])>E(Dsn[2,n−203])>⋯>E(Dsn[2,3]). |
(c) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+83,n−83])>E(Dsn[2n+83,n−143])>E(Dsn[2n+83,n−203])>⋯>E(Dsn[2n+83,3])>E(Dsn[2n−43,3])>E(Dsn[2n−163,3])>⋯>E(Dsn[2,3]). |
(d) If n−3≡2(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2,n−2])>E(Dsn[2,n−4])>E(Dsn[2,n−6])>⋯>E(Dsn[2,3]). |
(e) If n−3≡0(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2,n−2])>E(Dsn[2,n−4])>E(Dsn[2,n−6])>⋯>E(Dsn[2,3]). |
(ii) Let r≡0(mod4).
(a) If n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[4,n−4])>E(Dsn[4,n−6])>E(Dsn[4,n−8])>E(Dsn[4,3])>E(Dsn[2,3]). |
(b) If n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[4,n−4])>E(Dsn[4,n−6])>E(Dsn[4,n−8])>E(Dsn[4,3])>E(Dsn[2,3]). |
(c) If r∈[2,2n3] then
E(Dsn[4,n−4])>E(Dsn[8,n−8])>⋯>E(Dsn[2n−103,n+103])>E(Dsn[2n−223,n+103])>E(Dsn[2n−343,n+103])>⋯>E(Dsn[4,n+103])>E(Dsn[4,n+43])>E(Dsn[4,n−23])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(d) If r∈[2n3,n−2] and n−3≡2(mod4) then
E(Dsn[n−5,5])>E(Dsn[n−9,9])>⋯>E(Dsn[2n+23,n−23])>E(Dsn[2n−103,n−23])>E(Dsn[2n−223,n−23])>E(Dsn[4,n−23])>E(Dsn[4,n−83])>E(Dsn[4,n−143])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
(e) If r∈[2n3,n−2] and n−3≡0(mod4) then
E(Dsn[n−3,3])>E(Dsn[n−7,7])>⋯>E(Dsn[2n+23,n−23])>E(Dsn[2n+23,n−83])>E(Dsn[2n+23,n−143])>⋯>E(Dsn[2n+23,3])>E(Dsn[2n−103,3])>E(Dsn[2n−223,3])>⋯>E(Dsn[4,3])>E(Dsn[2,3]). |
Example 3.18. We illustrate Theorem 3.17 by considering sidigraphs of different order.
(1) Take n=15, that is, n≡0(mod3) and n−3≡0(mod4).
(i) Let r≡2(mod4).
(a) Let r∈[2,2n3]=[2,10]. Then
E(Dsn[10,n−10]=E(Dsn[2n3,n3])=E(Dsn[10,5])=9.7082E(Dsn[2n−243,n3])=E(Dsn[2,n3])=E(Dsn[2,5])=5.2361E(Dsn[2n−123,n3])=E(Dsn[6,5])=7.2361E(Dsn[2,n−2])=E(Dsn[2,13])=10.2962E(Dsn[6,n−6])=E(Dsn[6,9])=9.7588E(Dsn[2,n−62])=E(Dsn[2,3])=4. |
Above calculations yield.
E(Dsn[2,13])>E(Dsn[6,9])>E(Dsn[10,5])>E(Dsn[6,5])>E(Dsn[2,5])>E(Dsn[2,3]). |
(b) Let r∈[2,2n3]=[10,13]. Then
E(Dsn[n−3,3]=E(Dsn[2n3,n3])=E(Dsn[10,5])=9.7082E(Dsn[2n−123,n3])=E(Dsn[2,n3])=E(Dsn[2,5])=5.2361E(Dsn[2n−123,n3])=E(Dsn[6,5])=7.2361E(Dsn[2,n−62])=E(Dsn[2,3])=4. |
It follows that
E(Dsn[10,5])>E(Dsn[6,5])>E(Dsn[2,5])>E(Dsn[2,3]). |
(c) Since n−3=12≡0(mod4). Therefore we have
E(Dsn[n−13,13])=E(Dsn[2,n−2])=E(Dsn[2,13])=8.2962E(Dsn[n−5,5])=E(Dsn[10,5])=9.3914E(Dsn[n−9,9])=E(Dsn[6,9])=9.2229E(Dsn[2,n−4])=E(Dsn[2,11])=7.0267E(Dsn[2,n−6])=E(Dsn[2,9])=5.7588E(Dsn[2,n−8])=E(Dsn[2,7])=4.4940E(Dsn[2,n−10])=E(Dsn[2,5])=3.2361E(Dsn[2,n−12])=E(Dsn[2,3])=2E(Dsn[2,2])=0. |
Hence we get,
E(Dsn[10,5])>E(Dsn[6,9])>E(Dsn[2,13])>E(Dsn[2,11])>E(Dsn[2,9])>E(Dsn[2,7])>E(Dsn[2,5])>E(Dsn[2,3])>E(Dsn[2,2]). |
(ii) Let r≡0(mod4).
(a) Since n−3=12≡0(mod4). Therefore we have
E(Dsn[n−11,11])=E(Dsn[4,n−4])=E(Dsn[4,11])=9.0267E(Dsn[n−3,3])=E(Dsn[12,3])=9.4641E(Dsn[n−7,7])=E(Dsn[8,7])=9.3224E(Dsn[4,n−6])=E(Dsn[4,9])=7.7588E(Dsn[4,n−8])=E(Dsn[4,7])=6.4940E(Dsn[4,n−10])=E(Dsn[4,5])=5.2361E(Dsn[4,n−12])=E(Dsn[4,3])=4E(Dsn[2,3])=2. |
Above calculations yield,
E(Dsn[12,3])>E(Dsn[8,7])>E(Dsn[4,11])>E(Dsn[4,9])>E(Dsn[4,7])>E(Dsn[4,5])>E(Dsn[4,3])>E(Dsn[2,3]). |
(b) Let r∈[2,2n3]=[2,10]. Then
E(Dsn[4,n3])=E(Dsn[4,5])=6.0645E(Dsn[8,n−8])=E(Dsn[2n−63,n+63])=E(Dsn[8,7])=9.7202E(Dsn[2n−183,n+63])=E(Dsn[4,7]=7.3224E(Dsn[4,n−63])=E(Dsn[4,3])=4.8284E(Dsn[4,n−4])=E(Dsn[4,11])=9.8551E(Dsn[2,3])=2E(Dsn[2,2])=0. |
Therefore, we conclude
E(Dsn[4,11])>E(Dsn[8,7])>E(Dsn[4,7])>E(Dsn[4,5])>E(Dsn[4,3])>E(Dsn[2,3])>E(Dsn[2,2]). |
(c) Let r∈[2n3,n−2]=[10,13]. Then
E(Dsn[n−3,3])=E(Dsn[2n+63,n−63])=E(Dsn[12,3])=9.7274E(Dsn[2n−63,3])=E(Dsn[8,3])=7.2263E(Dsn[2n−183,3])=E(Dsn[4,3])=4.8284. |
Hence,
E(Dsn[12,3])>E(Dsn[8,3])>E(Dsn[4,3])>E(Dsn[2,3])>E(Dsn[2,2]). |
Analogously, for a fixed n, one can verify the energy ordering of Parts (2) and (3) of Theorem 3.17.
Let Dn denotes the set of vertex-disjoint bicyclic digraphs of a fixed order n. We investigate the energy ordering of signed digraphs in Dsn and find the maximal energy. The results for the case, when both directed cycles are even are obtained in [12]. Therefore we have solved the remaining cases for energy ordering in Dsn.
The authors wish to thank to the National University of Sciences and Technology for providing favorable environment for research.
The authors declare no conflict of interest.
[1] |
I. Peña, J. Rada, Energy of digraphs, Linear Multilinear A., 56 (2008), 565-579. doi: 10.1080/03081080701482943
![]() |
[2] |
S. Pirzada, M. A. Bhat, Energy of signed digraphs, Discrete Appl. Math., 169 (2014), 195-205. doi: 10.1016/j.dam.2013.12.018
![]() |
[3] |
M. Khan, R. Farooq, J. Rada, Complex adjacency matrix and energy of digraphs, Linear Multilinear A., 65 (2017), 2170-2186. doi: 10.1080/03081087.2016.1265064
![]() |
[4] |
R. Farooq, M. Khan, S. Chand, On iota energy of signed digraphs, Linear Multilinear A., 67 (2019), 705-724. doi: 10.1080/03081087.2018.1431200
![]() |
[5] | M. Khan, R. Farooq, On the energy of bicyclic signed digraphs, J. Math. Inequal., 11 (2017), 845-862 . |
[6] | M. Khan, R. Farooq, A. A. Siddiqui, On the extremal energy of bicyclic digraphs, J. Math. Inequal., 9 (2015), 799-810. |
[7] | R. Farooq, M. Khan, F. Ahmad, Extremal iota energy of bicyclic digraphs, Appl. Math. Comput., 303 (2017), 24-33. |
[8] | R. Farooq, S. Chand, M. Khan, Iota energy of bicyclic signed digraphs, Asian-European J. Math., 12 (2019), 1-14. |
[9] | J. Monslave, J. Rada, Bicyclic digraphs with maximal energy, Appl. Math. Comput., 280 (2016), 124-131. |
[10] | S. Hafeez, R. Farooq, M. Khan, Bicylic signed digraphs with maximal energy, Appl. Math. Comput., 347 (2019), 702-711. |
[11] | X. Yang, L. Wang, On the ordering of bicyclic digraphs with respect to energy and iota energy, Appl. Math. Comput., 339 (2018), 768-778. |
[12] | X. Yang, L. Wang, Ordering of bicyclic signed digraphs by energy, Filomat, to appear. |
[13] | X. Yang, L. Wang, Iota energy ordering of bicyclic signed digraphs, arXiv:2004.01412v1. |