A perfect directed code (or an efficient twin domination) of a digraph is a vertex subset where every other vertex in the digraph has a unique in- and a unique out-neighbor in the subset. In this paper, we show that a digraph covers a complete digraph if and only if the vertex set of this digraph can be partitioned into perfect directed codes. Equivalent conditions for subsets in Cayley digraphs to be perfect directed codes are given. Especially, equivalent conditions for normal subsets, normal subgroups, and subgroups to be perfect directed codes in Cayley digraphs are given. Moreover, we show that every subgroup of a finite group is a perfect directed code for a transversal Cayley digraph.
Citation: Yan Wang, Kai Yuan, Ying Zhao. Perfect directed codes in Cayley digraphs[J]. AIMS Mathematics, 2024, 9(9): 23878-23889. doi: 10.3934/math.20241160
A perfect directed code (or an efficient twin domination) of a digraph is a vertex subset where every other vertex in the digraph has a unique in- and a unique out-neighbor in the subset. In this paper, we show that a digraph covers a complete digraph if and only if the vertex set of this digraph can be partitioned into perfect directed codes. Equivalent conditions for subsets in Cayley digraphs to be perfect directed codes are given. Especially, equivalent conditions for normal subsets, normal subgroups, and subgroups to be perfect directed codes in Cayley digraphs are given. Moreover, we show that every subgroup of a finite group is a perfect directed code for a transversal Cayley digraph.
[1] | S. D. Andres, W. Hochstättler, Perfect Digraphs, J. Graph Theory, 79 (2014), 21–29. https://doi.org/10.1002/jgt.21811 doi: 10.1002/jgt.21811 |
[2] | T. Araki, On the $k$-tuple domination in de Bruijn and Kautz digraphs, Inform. Process. Lett., 104 (2007), 86–90. https://doi.org/10.1016/j.ipl.2007.05.010 doi: 10.1016/j.ipl.2007.05.010 |
[3] | T. Araki, The $k$-tuple twin domination in de Bruijn and Kautz digraphs, Discrete Math., 308 (2008), 6406–6413. https://doi.org/10.1016/j.disc.2007.12.020 doi: 10.1016/j.disc.2007.12.020 |
[4] | S. Arumugam, K. Ebadi, L. Sathikala, Twin domination and twin irredundance in digraphs, Appl. Anal. Discrete Math., 7 (2013), 275–284. https://doi.org/10.2298/AADM130429007A doi: 10.2298/AADM130429007A |
[5] | M. Atapour, A. Bodaghli, S. M. Sheikholeslami, Twin signed total domination numbers in directed graphs, Ars Combin., 138 (2018), 119–131. |
[6] | B. Bollobás, Modern graph theory, Springer New York, 1998. |
[7] | R. Q. Feng, H. Huang, S. M. Zhou, Perfect codes in circulant graphs, Discrete Math., 340 (2017), 1522–1527. https://doi.org/10.1016/j.disc.2017.02.007 doi: 10.1016/j.disc.2017.02.007 |
[8] | J. Bang-Jensen, G. Gutin, Digraphs: theory, algorithms and applications (Second Edition), Springer Science Business Media, 2008. |
[9] | G. Chartrand, P. Dankelmann, M. Schultz, H. C. Swart, Twin domination in digraphs, Ars Combin., 67 (2003), 105–114. |
[10] | J. Ghoshal, R. Laskar, D. Pillone, Topics on domination in directed graphs, Domination in Graphs Advanced Topics, (2017), 401–438. |
[11] | P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), 26–30. https://doi.org/10.1112/jlms/s1-10.37.26 doi: 10.1112/jlms/s1-10.37.26 |
[12] | J. Huang, J. M. Xu, The total domination and total bondage numbers of extended de Bruijn and Kautz digraphs, Comput. Math. Appl., 53 (2007), 1206–1213. https://doi.org/10.1016/j.camwa.2006.05.020 doi: 10.1016/j.camwa.2006.05.020 |
[13] | J. Lee, Independent perfect domination sets in Cayley graphs, J. Graph Theory, 37 (2001), 213–219. https://doi.org/10.1002/jgt.1016 doi: 10.1002/jgt.1016 |
[14] | Y. Kikuchi, Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs, Inform. Process. Lett., 86 (2003), 79–85. https://doi.org/10.1016/S0020-0190(02)00479-9 doi: 10.1016/S0020-0190(02)00479-9 |
[15] | H. E. Rose, A course on finite groups, Springer London, 2009 |
[16] | E. F. Shan, Y. X. Dong, Y. K. Cheng, The twin domination number in generalized de Bruijn digraphs, Inform. Process. Lett., 109 (2009), 856–860. https://doi.org/10.1016/j.ipl.2009.04.010 doi: 10.1016/j.ipl.2009.04.010 |
[17] | Y. L. Wang, Efficient twin domination in generalized De Bruijn digraphs, Discrete Math., 338 (2015), 36–40. https://doi.org/10.1016/j.disc.2014.10.014 doi: 10.1016/j.disc.2014.10.014 |
[18] | M. Ždímalová, M. Olejár, Large Cayley digraphs of given degree and diameter from sharply $t$-transitive groups Australasian J. Combin., 47 (2010), 211–216. |
[19] | M. Ždímalová, L. Staneková, Which Faber-Moore-Chen digraphs are cayley digraphs? Discrete Math., 310 (2010), 2238–2240. https://doi.org/10.1016/j.disc.2010.04.020 doi: 10.1016/j.disc.2010.04.020 |