We address the prescribed-time stability of a class of nonlinear system with uncertainty/disturbance. With the help of the parametric Lyapunov equation (PLE), we designed a state feedback control to regulate the full-state of a controlled system within prescribed time, independent of initial conditions. The result illustrated that the controlled state converges to zero as $t$ approaches the settling time and remains zero thereafter. It was further proved that the controller is bounded by a constant that depends on the system state. A numerical example is presented to verify the validity of the theoretical results.
Citation: Lichao Feng, Mengyuan Dai, Nan Ji, Yingli Zhang, Liping Du. Prescribed-time stabilization of nonlinear systems with uncertainties/disturbances by improved time-varying feedback control[J]. AIMS Mathematics, 2024, 9(9): 23859-23877. doi: 10.3934/math.20241159
We address the prescribed-time stability of a class of nonlinear system with uncertainty/disturbance. With the help of the parametric Lyapunov equation (PLE), we designed a state feedback control to regulate the full-state of a controlled system within prescribed time, independent of initial conditions. The result illustrated that the controlled state converges to zero as $t$ approaches the settling time and remains zero thereafter. It was further proved that the controller is bounded by a constant that depends on the system state. A numerical example is presented to verify the validity of the theoretical results.
[1] | M. B. Brilliant, Theory of the analysis of nonlinear systems, Technical report, Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, 1958. |
[2] | S. Sastry, Nonlinear systems: analysis, stability, and control, New York: Springer, 1999. https://doi.org/10.1007/978-1-4757-3108-8 |
[3] | F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, G. De Tommasi, Finite-time stability and control, London: Springer, 2014. https://doi.org/10.1007/978-1-4471-5664-2 |
[4] | X. Huang, W. Lin, B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, 41 (2005), 881–888. https://doi.org/10.1016/j.automatica.2004.11.036 doi: 10.1016/j.automatica.2004.11.036 |
[5] | Y Hong, Z. Jiang, Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties, IEEE Trans. Automat. Contr., 51 (2006), 1950–1956. https://doi.org/10.1109/TAC.2006.886515 doi: 10.1109/TAC.2006.886515 |
[6] | Y. Shen, Y. Huang, Global finite-time stabilization for a class of nonlinear systems, Int. J. Syst. Sci., 43 (2010), 73–78. https://doi.org/10.1080/00207721003770569 doi: 10.1080/00207721003770569 |
[7] | Z. Sun, L. Xue, K. Zhang, A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system, Automatica, 58 (2015), 60–66. https://doi.org/10.1016/j.automatica.2015.05.005 doi: 10.1016/j.automatica.2015.05.005 |
[8] | Y. Shtessel, C. Edwards, L. Fridman, A. Levant, Sliding mode control and observation, New York: Birkhäuser, 2014. https://doi.org/10.1007/978-0-8176-4893-0 |
[9] | S. Ding, A. Levant, S. Li, Simple homogeneous sliding-mode controller, Automatica, 67 (2016), 22–32. https://doi.org/10.1016/j.automatica.2016.01.017 doi: 10.1016/j.automatica.2016.01.017 |
[10] | S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358 |
[11] | Z. Y. Sun, Y. Shao, C. C. Chen, Fast finite-time stability and its application in adaptive control of high-order nonlinear system, Automatica, 106 (2019), 339–348. https://doi.org/10.1016/j.automatica.2019.05.018 doi: 10.1016/j.automatica.2019.05.018 |
[12] | Y. Hong, Finite-time stabilization and stabilizability of a class of controllable systems, Syst. Control Lett., 46 (2002), 231–236. https://doi.org/10.1016/S0167-6911(02)00119-6 doi: 10.1016/S0167-6911(02)00119-6 |
[13] | S. P. Bhat, D. S. Bernstein. Geometric homogeneity with applications to finite-time stability, Math. Control Signals Syst., 17 (2005), 101–127. https://doi.org/10.1007/s00498-005-0151-x doi: 10.1007/s00498-005-0151-x |
[14] | A. Polyakov, D. Efimov, W. Perruquetti, Finite-time and fixed-time stabilization: implicit Lyapunov function approach, Automatica, 51 (2015), https://doi.org/10.1016/j.automatica.2014.10.082 |
[15] | W. Lin, C. C. Qian, Adding a power integrator: a tool for global stabilization of high-order lower-triangular systems, Syst. Control Lett., 39 (2000), 339–351. https://doi.org/10.1016/S0167-6911(99)00115-2 doi: 10.1016/S0167-6911(99)00115-2 |
[16] | C. Hu, J. Yu, Z. Chen, H. J. Jiang, T. W. Huang, Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Net., 89 (2017), 74–83. https://doi.org/10.1016/j.neunet.2017.02.001 doi: 10.1016/j.neunet.2017.02.001 |
[17] | A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Contr., 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869 |
[18] | K. Zimenko, A, Polyakov, D. Efimov, W. Perruquetti, On simple scheme of finite/fixed-time control design, Int. J. Control, 93 (2020), 1353–1361. https://doi.org/10.1080/00207179.2018.1506889 doi: 10.1080/00207179.2018.1506889 |
[19] | Z. Zuo, Q. L. Han, B. Ning, X. Ge, X. M, Zhang, An overview of recent advances in fixed-time cooperative control of multiagent systems, IEEE Trans. Ind. Inf., 14 (2018), 2322–2334. https://doi.org/10.1109/TⅡ.2018.2817248 doi: 10.1109/TⅡ.2018.2817248 |
[20] | C. C. Chen, Z. Y. Sun, Fixed-time stabilization for a class of high-order non-linear systems, IET Control Theory Appl., 12 (2018), 2578–2587. https://doi.org/10.1049/iet-cta.2018.5053 doi: 10.1049/iet-cta.2018.5053 |
[21] | B. Ning, Q. Han, Z. Zuo, L. Ding, Q. Lu, X. Ge, Fixed-time and prescribed-time consensus control of multiagent systems and its applications: a survey of recent trends and methodologies, IEEE Trans. Ind. Inf., 19 (2022), 1121–1135. https://doi.org/10.1109/TⅡ.2022.3201589 doi: 10.1109/TⅡ.2022.3201589 |
[22] | X. Li, C. Wen, J. Wang, Lyapunov-based fixed-time stabilization control of quantum systems, J. Autom. Intell., 1 (2022), 100005. https://doi.org/10.1016/j.jai.2022.100005 doi: 10.1016/j.jai.2022.100005 |
[23] | P. Zarchan, Tactical and strategic missile guidance, 6 Eds., American Institute of Aeronautics and Astronautics, Inc., 2012. https://doi.org/10.2514/4.868948 |
[24] | Y. D. Song, Y. Wang, J. Holloway, M. Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243–251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008 |
[25] | Y. D. Song, Y. Wang, M. Krstic, Time-varying feedback for stabilization in prescribed finite time, Int. J. Robust Nonlinear Contr., 29 (2019), 618–633. https://doi.org/10.1002/rnc.4084 doi: 10.1002/rnc.4084 |
[26] | D. Tran, T. Yucelen, S. B. Sarsilmaz, Finite-time control of multiagent networks as systems with time transformation and separation principle, Control Eng. Pract., 108 (2021), 104717. https://doi.org/10.1016/j.conengprac.2020.104717 doi: 10.1016/j.conengprac.2020.104717 |
[27] | K. Zhao, Y. Song, Y. Wang, Regular error feedback based adaptive practical prescribed time tracking control of normal-form nonaffine systems, J. Franklin Inst., 356 (2019), 2759–2779. https://doi.org/10.1016/j.jfranklin.2019.02.015 doi: 10.1016/j.jfranklin.2019.02.015 |
[28] | Y. Wang, Y. D. Song. A general approach to precise tracking of nonlinear systems subject to non-vanishing uncertainties, Automatica, 106 (2019), 306–314. https://doi.org/10.1016/j.automatica.2019.05.008 doi: 10.1016/j.automatica.2019.05.008 |
[29] | W. Li, M. Krstic, Stochastic nonlinear prescribed-time stabilization and inverse optimality, IEEE Trans. Automat. Contr., 67 (2021), 1179–1193. https://doi.org/10.1109/TAC.2021.3061646 doi: 10.1109/TAC.2021.3061646 |
[30] | H. Ye, Y. Song, Prescribed-time control for linear systems in canonical form via nonlinear feedback, IEEE Trans. Syst. Man Cyber.: Syst., 53 (2023), 1126–1135. https://doi.org/10.1109/TSMC.2022.3194908 doi: 10.1109/TSMC.2022.3194908 |
[31] | F. Gao, Y. Wu, Z. Zhang, Global fixed-time stabilization of switched nonlinear systems: a time-varying scaling transformation approach, IEEE Trans. Circuits Syst. Ⅱ: Express Briefs, 66 (2019), 1890–1894. https://doi.org/10.1109/TCSⅡ.2018.2890556 doi: 10.1109/TCSⅡ.2018.2890556 |
[32] | J. Tsinias, A theorem on global stabilization of nonlinear systems by linear feedback, Syst. Control Lett., 17 (1991), 357–362. https://doi.org/10.1016/0167-6911(91)90135-2 doi: 10.1016/0167-6911(91)90135-2 |
[33] | J. Holloway, M. Krstic, Prescribed-time observers for linear systems in observer canonical form, IEEE Trans. Automat. Contr., 64 (2019), 3905–3912. https://doi.org/10.1109/TAC.2018.2890751 doi: 10.1109/TAC.2018.2890751 |
[34] | P. Krishnamurthy, F. Khorrami, M. Krstic, A dynamic high-gain design for prescribed-time regulation of nonlinear systems, Automatica, 115 (2020), 108860. https://doi.org/10.1016/j.automatica.2020.108860 doi: 10.1016/j.automatica.2020.108860 |
[35] | E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, A. G. Loukianov, A Lyapunov-like characterization of predefined-time stability, IEEE Trans. Automat. Contr., 65 (2020), 4922–4927. https://doi.org/10.1109/TAC.2020.2967555 doi: 10.1109/TAC.2020.2967555 |
[36] | B. Zhou, Finite-time stabilization of linear systems by bounded linear time-varying feedback, Automatica, 113 (2020), 108760. https://doi.org/10.1016/j.automatica.2019.108760 doi: 10.1016/j.automatica.2019.108760 |
[37] | B. Zhou, Y. Shi, Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback, IEEE Trans. Automat. Contr., 66 (2021), 6123–6130. https://doi.org/10.1109/TAC.2021.3061645 doi: 10.1109/TAC.2021.3061645 |
[38] | K. K. Zhang, B. Zhou, G, Duan, Prescribed-time input-to-state stabilization of normal nonlinear systems by bounded time-varying feedback, IEEE Trans. Circuits Syst. I, 69 (2022), 3715–3725. https://doi.org/10.1109/TCSI.2022.3182884 doi: 10.1109/TCSI.2022.3182884 |
[39] | C. C. Chen, C. J. Qian, Z. Y. Sun, Y. W. Yang, Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity, IEEE Trans. Automat. Contr., 63 (2017), 2212–2217. https://doi.org/10.1109/TAC.2017.2759274 doi: 10.1109/TAC.2017.2759274 |
[40] | Z. Sheng, Q. Ma, S. Xu, Prescribed-time output feedback control for high-order nonlinear systems, IEEE Trans. Circuits Syst. Ⅱ: Express Briefs, 70 (2023), 2460–2464. https://doi.org/10.1109/TCSⅡ.2023.3241160 doi: 10.1109/TCSⅡ.2023.3241160 |
[41] | X. He, X. Li, S. Song, Prescribed-time stabilization of nonlinear systems via impulsive regulation, IEEE Trans. Syst. Man Cyber.: Syst., 53 (2022), 981–985. https://doi.org/10.1109/TSMC.2022.3188874 doi: 10.1109/TSMC.2022.3188874 |
[42] | B. Zhou, K. K. Zhang, A linear time-varying inequality approach for prescribed time stability and stabilization, IEEE Trans. Cyber., 53 (2022), 1880–1889. https://doi.org/10.1109/TCYB.2022.3164658 doi: 10.1109/TCYB.2022.3164658 |