The prescribed-time spacecraft formation flying problem with uncertainties and unknown disturbances is investigated. First, based on Lie group SE(3), the coupled 6-degrees-of-freedom kinematics and dynamics for spacecraft with uncertainties and unknown disturbances are introduced. Second, with the aid of some key properties of a class of parametric Lyapunov equations, novel prescribed-time control laws are designed. It is proved that the proposed control laws can drive the relative motion between the leader spacecraft and follower spacecraft to zero in any prescribed time and are bounded. Finally, numerical simulations verify the effectiveness of the proposed control scheme.
Citation: Xiaowei Shao, Li Chen, Junli Chen, Dexin Zhang. Prescribed-time control for spacecraft formation flying with uncertainties and disturbances[J]. AIMS Mathematics, 2024, 9(1): 1180-1198. doi: 10.3934/math.2024058
The prescribed-time spacecraft formation flying problem with uncertainties and unknown disturbances is investigated. First, based on Lie group SE(3), the coupled 6-degrees-of-freedom kinematics and dynamics for spacecraft with uncertainties and unknown disturbances are introduced. Second, with the aid of some key properties of a class of parametric Lyapunov equations, novel prescribed-time control laws are designed. It is proved that the proposed control laws can drive the relative motion between the leader spacecraft and follower spacecraft to zero in any prescribed time and are bounded. Finally, numerical simulations verify the effectiveness of the proposed control scheme.
[1] | K. Gong, Y. Liao, Y. Wang, Adaptive fixed-time terminal sliding mode control on SE (3) for coupled spacecraft tracking maneuver, Int. J. Aerospace Eng., 2020 (2020), 3085495. http://doi.org/10.1155/2020/3085495 doi: 10.1155/2020/3085495 |
[2] | X. He, X. Li, S. Song, Finite-time input-to-state stability of nonlinear impulsive systems, Automatica, 135 (2022), 109994. https://doi.org/10.1016/j.automatica.2021.109994 doi: 10.1016/j.automatica.2021.109994 |
[3] | C. Hua, P. Ning, K. Li, Adaptive prescribed-time control for a class of uncertain nonlinear systems, IEEE Trans. Automat. Contr., 67 (2021), 6159–6166. http://doi.org/10.1109/TAC.2021.3130883 doi: 10.1109/TAC.2021.3130883 |
[4] | H. Khalil, Nonlinear Control, New York: Pearson, 2015. |
[5] | Q. Lan, J. Yang, S. Li, H. Sun, Finite-time control for 6DOF spacecraft formation flying systems, J. Aerospace Eng., 28 (2015), 04014136. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000476 doi: 10.1061/(ASCE)AS.1943-5525.0000476 |
[6] | D. Lee, Spacecraft coupled tracking maneuver using sliding mode control with input saturation, J. Aerospace Eng., 28 (2015), 04014136. http://doi.org/10.1061/(ASCE)AS.1943-5525.0000473 doi: 10.1061/(ASCE)AS.1943-5525.0000473 |
[7] | D. Lee, A. Sanyal, E. Butcher, Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance, J. Guid. Control Dynam., 38 (2015), 587–600. http://doi.org/10.2514/1.G000101 doi: 10.2514/1.G000101 |
[8] | X. Li, D. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024 |
[9] | X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031 |
[10] | Q. Li, J. Yuan, B. Zhang, H. Wang, Disturbance observer based control for spacecraft proximity operations with path constraint, Aerospace Sci. Technol., 79 (2018), 154–163. https://doi.org/10.1016/j.ast.2018.05.042 doi: 10.1016/j.ast.2018.05.042 |
[11] | M. Nazari, E. Butcher, T. Yucelen, A. Sanyal, Decentralized consensus control of a rigid-body spacecraft formation with communication delay, J. Guid. Control Dynam., 39 (2016), 838–851. http://dx.doi.org/10.2514/1.G001396 doi: 10.2514/1.G001396 |
[12] | C. Sabol, R. Burns, C. McLaughlin, Satellite formation flying design and evolution, J. Spacecraft Rockets, 38 (2001), 270–278. https://doi.org/10.2514/2.3681 doi: 10.2514/2.3681 |
[13] | Y. Song, Y. Wang, J. Holloway, M. Krstic, Time-varying feedbackfor regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243–251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008 |
[14] | L. Sun, W. Huo, Robust adaptive relative position tracking and attitude synchronization for spacecraft rendezvous, Aerospace Sci. Technol., 41 (2015), 28–35. https://doi.org/10.1016/j.ast.2014.11.013 doi: 10.1016/j.ast.2014.11.013 |
[15] | J. Wang, Z. Sun, 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying, Acta Astronaut., 73 (2012), 76–87. https://doi.org/10.1016/j.actaastro.2011.12.005 doi: 10.1016/j.actaastro.2011.12.005 |
[16] | J. Wang, H. Liang, Z. Sun, S. Zhang, M. Liu, Finite-time control for spacecraft formation with dual-number-based description, J. Guid. Control Dynam., 35 (2012), 950–962. https://doi.org/10.2514/1.54277 doi: 10.2514/1.54277 |
[17] | R. Wei, J. Cao, W. Qian, C. Xue, X. Ding, Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method, AIMS Math., 6 (2021), 6915–6932. http://doi.org/10.3934/math.2021405 doi: 10.3934/math.2021405 |
[18] | S. Wu, L. Chen, D. Zhang, J. Chen, X. Shao, Disturbance observer based fixed time sliding mode control for spacecraft proximity operations with coupled dynamics, Adv. Space Res., 66 (2020), 2179–2193. http://doi.org/10.1016/j.asr.2020.07.034 doi: 10.1016/j.asr.2020.07.034 |
[19] | Q. Yang, C. Bai, D. Yang, Finite-time stability of nonlinear stochastic $\psi $-Hilfer fractional systems with time delay, AIMS Math., 7 (2022), 18837–18852. http://doi.org/10.3934/math.20221037 doi: 10.3934/math.20221037 |
[20] | J. Zhang, D. Ye, Z. Sun, C. Liu, Extended state observer based robust adaptive control on SE (3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment, Acta Astronaut., 143 (2018), 221–233. http://doi.org/10.1016/j.actaastro.2017.11.034 doi: 10.1016/j.actaastro.2017.11.034 |
[21] | K. Zhang, B. Zhou, M. Hou, G. Duan, Prescribed-time control of high-order nonholonomic systems in chained form by time-varying feedback, Syst. Control Lett., 166 (2022), 105307. https://doi.org/10.1016/j.sysconle.2022.105307 doi: 10.1016/j.sysconle.2022.105307 |
[22] | K. Zhang, B. Zhou, H. Jiang, G. Liu, G. Duan, Practical prescribed-time sampled-data control of linear systems with applications to the air-bearing testbed, IEEE T. Ind. Electron., 69 (2021), 6152–6161. http://doi.org/10.1109/TIE.2021.3086720 doi: 10.1109/TIE.2021.3086720 |
[23] | B. Zhou, Finite-time stabilization of linear systems by bounded linear time-varying feedback, Automatica, 113 (2021), 108760. https://doi.org/10.1016/j.automatica.2019.108760 doi: 10.1016/j.automatica.2019.108760 |
[24] | B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback, Automatica, 121 (2021), 109191. http://doi.org/10.1016/j.automatica.2020.109191 doi: 10.1016/j.automatica.2020.109191 |
[25] | B. Zhou, Y. Shi, Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback, IEEE T. Automat. Control, 12 (2021), 6123–6130. http://doi.org/10.1109/TAC.2021.3061645 doi: 10.1109/TAC.2021.3061645 |
[26] | B. Zhou, K. Zhang, A linear time-varying inequality approach for prescribed time stability and stabilization, IEEE T. Cybernetics, 53 (2023), 1880–1889. http://doi.org/10.1109/TCYB.2022.3164658 doi: 10.1109/TCYB.2022.3164658 |