This article explored a specific variant of the overlapping generation model using a nonlinear Fredholm integral equation. We considered assumptions related to the Ćirić operator, offering a new perspective compared to existing research. To solve the equation, we employed the Galerkin method, which approximates it as a finite system of equations. By combining these approaches, we conducted a comprehensive analysis of the model, providing insights into its dynamics and potential applications.
Citation: Abdelkader Belhenniche, Monica-Felicia Bota, Liliana Guran. A new approach of overlapping generation model via fixed point technique[J]. AIMS Mathematics, 2024, 9(1): 1166-1179. doi: 10.3934/math.2024057
This article explored a specific variant of the overlapping generation model using a nonlinear Fredholm integral equation. We considered assumptions related to the Ćirić operator, offering a new perspective compared to existing research. To solve the equation, we employed the Galerkin method, which approximates it as a finite system of equations. By combining these approaches, we conducted a comprehensive analysis of the model, providing insights into its dynamics and potential applications.
[1] | P. A. Diamond, National debt in a neoclassical growth model, Am. Econ. Rev., 55 (1965), 1126–1150. https://doi.org/10.1090/S0894-0347-1992-1124979-1 doi: 10.1090/S0894-0347-1992-1124979-1 |
[2] | C. Edmond, An integral equation representation for overlapping generations in continuous time, J. Econ. Theory, 134 (2008), 596–609. https://doi.org/10.1016/j.jet.2008.03.006 doi: 10.1016/j.jet.2008.03.006 |
[3] | P. Weil, Overlapping families of infinitely-lived agents, J. Public Econ., 27 (1983), 183–198. https://doi.org/10.1016/0047-2727(89)90024-8 doi: 10.1016/0047-2727(89)90024-8 |
[4] | I. Fredholm, Sur une classe d'équations fonctionnelles, Acta Math., 19 (1903), 365–390. |
[5] | Z. Zou, R. Guo, The Riemann-Hilbert approach for the higher-order Gerdjikov-Ivanov equation, soliton interactions and position shift, Commun. Nonlinear Sci. Numer. Simulat., 124 (2023), 107316. https://doi.org/10.1016/j.cnsns.2023.107316 doi: 10.1016/j.cnsns.2023.107316 |
[6] | S. Shen, Z. Yang, X. Li, S. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci. Numer. Simulat., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005 |
[7] | X. Li, R. Guo, Interactions of localized wave structures on periodic backgrounds for the coupled Lakshmanan-Porsezian-Daniel equations in birefringent optical fibers, Ann. Phys., 535 (2023), 2200472. https://doi.org/10.1002/andp.202200472 doi: 10.1002/andp.202200472 |
[8] | B. G. Galerkin, On electrical circuits for the approximate solution of the Laplace equation, Vestnik Inzh., 19 (1915), 897–908. |
[9] | W. Hackbusch, S. A. Sauter, On the efficient use of the Galerkin-method to solve Fredholm integral equations, Appl. Math., 38 (1993), 301–322. |
[10] | Z. Chen, Y. Xu, The Petrov-Galerkin and Iterated Petrov-Galerkin methods for second-kind integral equations, SIAM J. Numer., 35 (1998), 406–434. https://doi.org/10.1137/S0036142996297217 doi: 10.1137/S0036142996297217 |
[11] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, SIAM J. Numer., 26 (1922), 133–181. |
[12] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Am. Math. Soc, 45 (1974), 267–273. |
[13] | L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. Beograd, 26 (1971), 19–26. |
[14] | L. B. Ćirić, Fixed-point theorems for multi-valued contractions in complete metric spaces, J. Math. Anal. Appl., 348 (2008), 499–507. https://doi.org/10.1016/j.jmaa.2008.07.062 doi: 10.1016/j.jmaa.2008.07.062 |