This paper marks a significant advancement in the field of chemoinformatics with the introduction of two novel topological indices: the forgotten eccentric neighborhood index (FENI) and the modified forgotten eccentric neighborhood index (MFENI). Uniquely developed for predicting the boiling points of various chemical substances, these indices offer groundbreaking tools in understanding and interpreting the thermal properties of compounds. The distinctiveness of our study lies in the in-depth exploration of the discriminative capabilities of FENI and MFENI. Unlike existing indices, they provide a nuanced capture of structural features essential for determining boiling points, a key factor in drug design and chemical analysis. Our comprehensive analyses demonstrate the superior predictive power of FENI and MFENI, highlighting their exceptional potential as innovative tools in the realms of chemoinformatics and pharmaceutical research. Furthermore, this study conducts an extensive investigation into their various properties. We present explicit results on the behavior of these indices in relation to diverse graph types and operations, including join, disjunction, composition and symmetric difference. These findings not only deepen our understanding of FENI and MFENI but also establish their practical versatility across a spectrum of chemical and pharmaceutical applications. Thus the introduction of FENI and MFENI represents a pivotal step forward in the predictive analysis of boiling points, setting a new standard in the field and opening avenues for future research advancements.
Citation: Suha Wazzan, Hanan Ahmed. Unveiling novel eccentric neighborhood forgotten indices for graphs and gaph operations: A comprehensive exploration of boiling point prediction[J]. AIMS Mathematics, 2024, 9(1): 1128-1165. doi: 10.3934/math.2024056
[1] | Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314 |
[2] | Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062 |
[3] | Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661 |
[4] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[5] | Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117 |
[6] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[7] | Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808 |
[8] | Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619 |
[9] | M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and M−W-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780 |
[10] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
This paper marks a significant advancement in the field of chemoinformatics with the introduction of two novel topological indices: the forgotten eccentric neighborhood index (FENI) and the modified forgotten eccentric neighborhood index (MFENI). Uniquely developed for predicting the boiling points of various chemical substances, these indices offer groundbreaking tools in understanding and interpreting the thermal properties of compounds. The distinctiveness of our study lies in the in-depth exploration of the discriminative capabilities of FENI and MFENI. Unlike existing indices, they provide a nuanced capture of structural features essential for determining boiling points, a key factor in drug design and chemical analysis. Our comprehensive analyses demonstrate the superior predictive power of FENI and MFENI, highlighting their exceptional potential as innovative tools in the realms of chemoinformatics and pharmaceutical research. Furthermore, this study conducts an extensive investigation into their various properties. We present explicit results on the behavior of these indices in relation to diverse graph types and operations, including join, disjunction, composition and symmetric difference. These findings not only deepen our understanding of FENI and MFENI but also establish their practical versatility across a spectrum of chemical and pharmaceutical applications. Thus the introduction of FENI and MFENI represents a pivotal step forward in the predictive analysis of boiling points, setting a new standard in the field and opening avenues for future research advancements.
The convexity of function is a classical concept, since it plays a fundamental role in mathematical programming theory, game theory, mathematical economics, variational science, optimal control theory and other fields, a new branch of mathematics, convex analysis, appeared in the 1960s. However, it has been noticed that the functions encountered in a large number of theoretical and practical problems in economics are not classical convex functions, therefore, in the past decades, the generalization of function convexity has attracted the attention of many scholars and aroused great interest, such as h-convex functions [1,2,3,4,5], log-convex functions [6,7,8,9,10], log-h-convex functions [11], and especially for coordinated convex [12]. Since 2001, various extensions and generalizations of integral inequalities for coordinated convex functions have been established in [12,13,14,15,16,17].
On the other hand, calculation error has always been a troublesome problem in numerical analysis. In many problems, it is often to speculate the accuracy of calculation results or use high-precision operation as far as possible to ensure the accuracy of the results, because the accumulation of calculation errors may make the calculation results meaningless, interval analysis as a new important tool to solve uncertainty problems has attracted much attention and also has yielded fruitful results, we refer the reader to the papers [18,19]. It is worth notion that in recent decades, many authors have combined integral inequalities with interval-valued functions(IVFs) and obtained many excellent conclusions. In [20], Costa gave Opial-type inequalities for IVFs. In [21,22], Chalco-Cano investigated Ostrowski type inequalities for IVFs by using generalized Hukuhara derivative. In [23], Román-Flores derived the Minkowski type inequalities and Beckenbach's type inequalities for IVFs. Very recently, Zhao [5,24] established the Hermite-Hadamard type inequalities for interval-valued coordinated functions.
Motivated by these results, in the present paper, we introduce the concept of coordinated log-h-convex for IVFs, and then present some new Jensen type inequalities and Hermite-Hadamard type inequalities for interval-valued coordinated functions. Also, we give some examples to illustrate our main results.
Let RI the collection of all closed and bounded intervals of R. We useR+IandR+ to represent the set of all positive intervals and the family of all positive real numbers respectively. The collection of all Riemann integrable real-valued functions on [a,b], IVFs on [a,b] and IVFs on △=[a,b]×[c,d] are denoted by R([a,b]), IR([a,b]) and ID(△). For more conceptions on IVFs, see [4,25]. Moreover, we have
Theorem 1. [4] Let f:[a,b]→RI such that f=[f_,¯f]. Then f∈IR([a,b]) iff f_, ¯f∈R([a,b]) and
(IR)∫baf(x)dx=[(R)∫baf_(x)dx,(R)∫ba¯f(x)dx]. |
Theorem 2. [25] Let F:△→RI. If F∈ID(△), then
(ID)∬△F(x,y)dxdy=(IR)∫badx(IR)∫dcF(x,y)dy. |
Definition 1. [26] Let h:[0,1]→R+. We say that f:[a,b]→R+I is interval log-h-convex function or that f∈SX(log-h,[a,b],R+I), if for all x,y∈[a,b] and ϑ∈[0,1], we have
f(ϑx+(1−ϑ)y)⊇[f(x)]h(ϑ)[f(y)]h(1−ϑ). |
h is called supermultiplicative if
h(ϑτ)≥h(ϑ)h(τ) | (2.1) |
for all ϑ,τ∈[0,1]. If "≥" in (2.1) is replaced with "≤", then h is called submultiplicative.
Theorem 3. [26] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
F(a+b2)12h(12)⊇exp[1b−a∫balnF(x)dx]⊇[F(a)F(b)]∫10h(ϑ)dϑ. | (2.2) |
Theorem 4. [27] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
[F(a+b2)]14h2(12)⊇[F(3a+b4)F(a+3b4)]14h(12)⊇(∫baF(x)dx)1b−a⊇[F(a)F(b)F2(a+b2)]12∫10h(ϑ)dϑ⊇[F(a)F(b)][12+h(12)]∫10h(ϑ)dϑ. | (2.3) |
In this section, we define the coordinated log-h-convex for IVFs and prove some new Jensen type inequalities and Hermite-Hadamard type inequalities by using this new definition.
Definition 2. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVFs on △ if the partial mappings
Fy:[a,b]→R+I,Fy(x)=F(x,y),Fx:[c,d]→R+I,Fx(y)=F(x,y) |
are log-h-convex for all y∈[c,d] and x∈[a,b]. Then the set of all coordinated log-h-convex IVFs on △ is denoted by SX(log-ch,△,R+I).
Definition 3. Let h:[0,1]→R+. Then F:△→R+ is called a coordinated log-h-convex function in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)≤[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). | (3.1) |
The set of all log-h-convex functions in △ is denoted by SX(log-h,△,R+). If inequality (3.1) is reversed, then F is said to be a coordinated log-h-concave function, the set of all log-h-concave functions in △ is denoted by SV(log-h,△,R+).
Definition 4. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVF in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)⊇[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). |
The set of all log-h-convex IVFs in △ is denoted by SX(log-h,△,R+I).
Theorem 5. Let F:△→R+I such that F=[F_,¯F]. If F∈SX(log-h,△,R+I) iff F_∈SX(log-h,△,R+) and ¯F∈SV(log-h,△,R+).
Proof. The proof is completed by combining the Definitions 3 and 4 above and the Theorem 3.7 of [4].
Theorem 6. If F∈SX(log-h,△,R+I), then F∈SX(log-ch,△,R+I).
Proof. Assume that F∈SX(log-h,△,R+I). Let Fx:[c,d]→R+I,Fx(y)=F(x,y). Then for all ϑ∈[0,1] and y1,y2∈[c,d], we have
Fx(ϑy1+(1−ϑ)y2)=F(x,ϑy1+(1−ϑ)y2)⊇F(ϑx+(1−ϑ)x,ϑy1+(1−ϑ)y2)⊇[F(x,y1)]h(ϑ)[F(x,y2)]h(1−ϑ)=[Fx(y1)]h(ϑ)[Fx(y2)]h(1−ϑ). |
Hence Fx(y)=F(x,y) is log-h-convex on [c,d]. The fact that Fy(x)=F(x,y) is log-h-convex on [a,b] goes likewise.
Remark 1. The converse of Theorem 6 is not generally true. Let h(ϑ)=ϑ and ϑ∈[0,1], △1=[π4,π2]×[π4,π2], and F:△1→R+I be defined:
F(x,y)=[e−sinx−siny,64xy]. |
Obviously, we have that F∈SX(log-ch,△1,R+I) and F∉SX(log-h,△1,R+I). Indeed, if (π4,π2),(π2,π4)∈△1, we have
F(ϑπ4+(1−ϑ)π2,ϑπ2+(1−ϑ)π4)=[e−sinϑπ4−sin(1−ϑ)π2,8π2ϑ(1−ϑ)],(F(π4,π2))h(ϑ)(F(π2,π4))h(1−ϑ)=[e(1−√22)ϑ−1,2ϑ+1π]. |
If ϑ=0, then
[0,1e]⊉[1e,2π]. |
Thus, F∉SX(log-h,△1,R+I).
In the following, Jensen type inequalities for coordinated log-h-convex functions in △ is considered.
Theorem 7. Let pi∈R+,xi∈[a,b],yi∈[c,d],(i=1,2,...,n),F:△→R+. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F(xi,yi)]h(piPn), | (3.2) |
where Pn=n∑i=1pi. If h is a nonnegative submultiplicative function and F∈SV(log-h,△,R+), then (3.2) is reversed.
Proof. If n=2, then from Definition 3, we have
F(p1P2x1+p2P2x2,p1P2y1+p2P2y2)≤[F(x1,y1)]h(p1P2)[F(x2,y2)]h(p2P2). |
Suppose (3.2) holds for n=k, then
F(1Pkk∑i=1pixi,1Pkk∑i=1piyi)≤k∏i=1[F(xi,yi)]h(piPk). |
Now, let us prove that (3.2) is valid when n=k+1,
F(1Pk+1k+1∑i=1pixi,1Pk+1k+1∑i=1piyi)=F(1Pk+1k−1∑i=1pixi+pk+pk+1Pk+1(pkxkpk+pk+1+pk+1xk+1pk+pk+1),1Pk+1k−1∑i=1piyi+pk+pk+1Pk+1(pkykpk+pk+1+pk+1yk+1pk+pk+1))≤[F(pkxkpk+pk+1+pk+1xk+1pk+pk+1,pkykpk+pk+1+pk+1yk+1pk+pk+1)]h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤([F(xk,yk)]h(pkpk+pk+1)[F(xk+1,yk+1)]h(pk+1pk+pk+1))h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤[F(xk,yk)]h(pkPk+1)[F(xk+1,yk+1)]h(pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)=k+1∏i=1[F(xi,yi)]h(piPk+1). |
This completes the proof.
Remark 2. If h(ϑ)=ϑ, then the inequality (3.2) is the Jensen inequality for log-convex functions.
Now, we prove the Jensen inequality for log-h-convex IVFs in △.
Theorem 8. Let pi∈R+,xi∈[a,b],yi∈[c,d],i=1,2,...,n,F:△→R+I such that F=[F_,¯F]. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+I), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)⊇n∏i=1[F(xi,yi)]h(piPn), | (3.3) |
where Pn=n∑i=1pi. If F∈SV(log-h,△,R+I), then (3.3) is reversed.
Proof. By Theorem 5 and Theorem 7, we have
F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F_(xi,yi)]h(piPn) |
and
¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≥n∏i=1[¯F(xi,yi)]h(piPn). |
Thus,
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)=[F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi),¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)]⊇[n∏i=1[F_(xi,yi)]h(piPn),n∏i=1[¯F(xi,yi)]h(piPn)]=n∏i=1[F(xi,yi)]h(piPn). |
This completes the proof.
Next, we prove the Hermite-Hadamard type inequalities for coordinated log-h-convex IVFs.
Theorem 9. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h2(12)⊇exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]⊇exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]⊇exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1−−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]⊇[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2. | (3.4) |
Proof. Since F∈SX(log-ch,△,R+I), we have
Fx(c+d2)=Fx(ϑc+(1−ϑ)d+(1−ϑ)c+ϑd2)⊇[Fx(ϑc+(1−ϑ)d)]h(12)[Fx((1−ϑ)c+ϑd)]h(12). |
That is,
lnFx(c+d2)⊇h(12)ln[Fx(ϑc+(1−ϑ)d)Fx((1−ϑ)c+ϑd)]. |
Moreover, we have
1h(12)lnFx(c+d2)⊇[∫10lnFx(ϑc+(1−ϑ)d)dϑ+∫10lnFx((1−ϑ)c+ϑd)dϑ]=[∫10lnF_x(ϑc+(1−ϑ)d)dϑ,∫10ln¯Fx(ϑc+(1−ϑ)d)dϑ]+[∫10lnF_x((1−ϑ)c+ϑd)dϑ,∫10ln¯Fx((1−ϑ)c+ϑd)dϑ]=2[1d−c∫dclnF_x(y)dy,1d−c∫dcln¯Fx(y)dy]=2d−c∫dclnFx(y)dy. |
Similarly, we get
1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
Then
12h(12)lnFx(c+d2)⊇1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
That is,
12h(12)lnF(x,c+d2)⊇1d−c∫dclnF(x,y)dy⊇ln[F(x,c)F(x,d)]∫10h(ϑ)dϑ. |
Integrating over [a,b], we have
12h(12)(b−a)∫balnF(x,c+d2)dx⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx]∫10h(ϑ)dϑ. |
Similarly, we have
12h(12)(d−c)∫dclnF(a+b2,y)dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]∫10h(ϑ)dϑ. |
Finally, we obtain
14h2(12)lnF(a+b2,c+d2)=14h(12)[12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy]⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12∫10h(ϑ)dϑ[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]⊇12(∫10h(ϑ)dϑ)2[lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)+lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)]⊇(∫10h(ϑ)dϑ)2[lnF(a,c)F(a,d)F(b,c)F(b,d)]. |
This concludes the proof.
Remark 3. If F_=¯F and h(ϑ)=ϑ, then Theorem 9 reduces to Corollary 3.1 of [13].
Example 1. Let [a,b]=[c,d]=[2,3],h(ϑ)=ϑ. We define F:[2,3]×[2,3]→R+I by
F(x,y)=[1xy,e√x+√y]. |
From Definition 2, F(x,y)∈SX(log-ch,△,R+I).
Since
[F(a+b2,c+d2)]14h2(12)=[425,e√10],exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]=[8e135,e√102+2√3−4√23],exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]=[16e2729,e43(3√3−2√2)],exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]=[2√6e81,e15√3−5√26], |
and
[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2=[16,e√2+√3]. |
It follows that
[425,e√10]⊇[8e135,e√102+2√3−4√23]⊇[16e2729,e43(3√3−2√2)]⊇[2√6e81,e15√3−5√26]⊇[16,e√2+√3] |
and Theorem 9 is verified.
Theorem 10. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h3(12)⊇exp[14h2(12)(b−a)∫baln(F(x,c+d2))dx+14h2(12)(d−c)∫dcln(F(a+b2,y))dy]⊇exp[14h(12)(b−a)∫baln(F(x,3c+d4)F(x,c+3d4))dx+14h(12)(d−c)∫dcln(F(3a+b4,y)F(a+3b4,y))dy]⊇exp[2(b−a)(d−c)∫ba∫dclnF(x,y)dxdy] | (3.5) |
⊇exp[12(b−a)∫baln(F(x,c)F(x,d)F2(x,fracc+d2))dx∫10h(ϑ)dϑ+12(d−c)∫dcln(F(a,y)F(b,y)F2(a+b2,y))dy∫10h(ϑ)dϑ]⊇exp[(12+h(12))1b−a∫baln[F(x,c)F(x,d)]dx∫10h(ϑ)dϑ+(12+h(12))1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ]⊇[F(a,c)F(a,d)F(b,c)F(b,d)F(a+b2,c)F(a+b2,d)×F(a,c+d2)F(b,c+d2)][12+h(12)](∫10h(ϑ)dϑ)2⊇[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(ϑ)dϑ)2. |
Proof. Since F∈SX(log-ch,△,R+I), by using Theorem 6 and (2.3), we have
14h2(12)ln[Fy(a+b2)]⊇14h(12)ln[Fy(3a+b4)Fy(a+3b4)]⊇1b−a∫balnFy(x)dx⊇12ln[Fy(a)Fy(b)F2y(a+b2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[Fy(a)Fy(b)]∫10h(ϑ)dϑ. |
That is,
14h2(12)ln[F(a+b2,y)]⊇14h(12)ln[F(3a+b4,y)F(a+3b4,y)]⊇1b−a∫balnF(x,y)dx⊇12ln[F(a,y)F(b,y)F2(a+b2,y)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,y)F(b,y)]∫10h(ϑ)dϑ. |
Moreover, we have
14h2(12)(d−c)∫dcln[F(a+b2,y)]dy⊇14h(12)(d−c)∫dcln[F(3a+b4,y)F(a+3b4,y)]dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12(d−c)∫dcln[F(a,y)F(b,y)F2(a+b2,y)]dy∫10h(ϑ)dϑ⊇[12+h(12)]1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ. |
Similarly, we have
![]() |
We also from (2.2),
12h(12)lnF(a+b2,c+d2)⊇1b−a∫balnF(x,c+d2)dx,12h(12)lnF(a+b2,c+d2)⊇1d−c∫dclnF(a+b2,y)dy. |
Again from (2.3),
1b−a∫balnF(x,c)dx⊇12ln[F(a,c)F(b,c)F2(a+b2,c)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(b,c)]∫10h(ϑ)dϑ,1b−a∫balnF(x,d)ds⊇12ln[F(a,d)F(b,d)F2(a+b2,d)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,d)F(b,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(a,y)dy⊇12ln[F(a,c)F(a,d)F2(a,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(a,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(b,y)dy⊇12ln[F(b,c)F(b,d)F2(b,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(b,c)F(b,d)]∫10h(ϑ)dϑ |
and proof is completed.
Example 2. Furthermore, by Example 1, we have
![]() |
and
[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(θ)dθ)2=[136,e2√3+2√2]. |
It follows that
[16625,e2√10]⊇[64e218225,e4(3√3−2√2)+3√103]⊇[256e272171,e4(3√3−2√2)3+3+√112]⊇[256e4531441,e8(3√3−2√2)3]⊇[16√6e210935,e12√3−8√2+3√106]⊇[8e22187,e15√3−5√23]⊇[√690,e3√3+3√2+√102]⊇[136,e2√3+2√2] |
and Theorem 10 is verified.
We introduced the coordinated log-h-convexity for interval-valued functions, some Jensen type inequalities and Hermite-Hadamard type inequalities are proved. Our results generalize some known inequalities and will be useful in developing the theory of interval integral inequalities and interval convex analysis. The next step in the research direction investigated inequalities for fuzzy-interval-valued functions, and some applications in interval nonlinear programming.
The first author was supported in part by the Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500) and the National Key Research and Development Program of China (2018YFC1508100).
The authors declare no conflict of interest.
[1] |
M. Randic̀ , Generalized molecular descriptors. J. Math. Chem., 7 (1991), 155–168. https://doi.org/10.1007/BF01200821 doi: 10.1007/BF01200821
![]() |
[2] | S. Nikolić, N. Trinajstić, The Wiener index: Development and applications, Croat. Chem. Acta, 68 (1995), 105–129. |
[3] |
I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006
![]() |
[4] |
M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157 (2009), 804–811. https://doi.org/10.1016/j.dam.2008.06.015 doi: 10.1016/j.dam.2008.06.015
![]() |
[5] | G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013), 213–220. |
[6] |
H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005
![]() |
[7] |
A. A. Khabyah, S. Zaman, A. N. A. Koam, A. Ahmad, A. Ullah, Minimum Zagreb eccentricity indices of two-mode network with applications in boiling point and benzenoid hydrocarbons, Mathematics, 10 (2022), 1–18. https://doi.org/10.3390/math10091393 doi: 10.3390/math10091393
![]() |
[8] |
X. J. Wang, M. F. Hanif, H. Mahmood, S. Manzoor, M. K. Siddiqui, M. Cancan, On computation of entropy measures and their statistical analysis for complex benzene systems, Polycycl. Aromat. Comp., 43 (2023), 7754–7768. https://doi.org/10.1080/10406638.2022.2139734 doi: 10.1080/10406638.2022.2139734
![]() |
[9] |
F. Arjmand, F. Shafiei, Prediction of the normal boiling points and enthalpy of vaporizations of alcohols and phenols using topological indices, J. Struct. Chem., 59 (2018), 748–754. https://doi.org/10.1134/S0022476618030393 doi: 10.1134/S0022476618030393
![]() |
[10] |
I. Redžepović, B. Furtula, Predictive potential of eigenvalue-based topological molecular descriptors, J. Comput. Aided Mol. Des., 34 (2020), 975–982. https://doi.org/10.1007/s10822-020-00320-2 doi: 10.1007/s10822-020-00320-2
![]() |
[11] |
A. Rauf, M. Naeem, S. U. Bukhari, Quantitative structure-property relationship of Ev-degree and Ve-degree based topological indices: Physico-chemical properties of benzene derivatives, Int. J. Quantum Chem., 122 (2022), e26851. https://doi.org/10.1002/qua.26851 doi: 10.1002/qua.26851
![]() |
[12] |
Y. L. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881
![]() |
[13] |
M. Rizwan, A. A. Bhatti, M. Javaid, Y. L. Shang, Conjugated tricyclic graphs with maximum variable sum exdeg index, Heliyon, 9 (2023), E15706. https://doi.org/10.1016/j.heliyon.2023.e15706 doi: 10.1016/j.heliyon.2023.e15706
![]() |
[14] |
B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z
![]() |
[15] |
I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
![]() |
[16] | E. D. Molina, J. M. Rodriguez, J. L. Sanchez, J. M. Sigarreta, Applications of the inverse degree index to molecular structures, J. Math. Chem., 2023. https://doi.org/10.1007/s10910-023-01526-z |
[17] |
G. F. Su, S. Wang, J. F. Du, M. J. Gao, K. C. Das, Y. L. Shang, Sufficient conditions for a graph to be ℓ-connected, ℓ-deficient, ℓ-Hamiltonian and ℓ-independent in terms of the forgotten topological index, Mathematics, 10 (2022), 1–11. https://doi.org/10.3390/math10111802 doi: 10.3390/math10111802
![]() |
[18] |
H. Ahmed, M. R. Salestina, A. Alwardi, N. D. Soner, Forgotten domination, hyper domination and modified forgotten domination indices of graphs, J. Discrete Math. Sci. Cryptogr., 24 (2021), 353–368. https://doi.org/10.1080/09720529.2021.1885805 doi: 10.1080/09720529.2021.1885805
![]() |
[19] |
N. De, S. M. A. Nayeem, A. Pal, F-index of some graph operations, Discrete Math. Algorithms Appl., 8 (2016), 1650025. https://doi.org/10.1142/S1793830916500257 doi: 10.1142/S1793830916500257
![]() |
[20] |
H. S. Ramane, R. B. Jummannaver, Note on forgotten topological index of chemical structure in drugs, Appl. Math. Nonlinear Sci., 1 (2016), 369–374. https://doi.org/10.21042/AMNS.2016.2.00032 doi: 10.21042/AMNS.2016.2.00032
![]() |
[21] | S. Mondal, N. De, A. Pal, Onsome new neighbourhood degree based indices, Acta Chem. Iasi, 27 (2019), 31–46. |
[22] | F. Harary, Graph theory, New Delhi: Narosa Publishing House, 2001. |
[23] |
H. Ahmed, A. Saleh, R. Ismail, M. R. Salestina, A. Alameri, Computational analysis for eccentric neighborhood Zagreb indices and their significance, Heliyon, 9 (2023), E17998. https://doi.org/10.1016/j.heliyon.2023.e17998 doi: 10.1016/j.heliyon.2023.e17998
![]() |
[24] |
S. Wazzan, A. Saleh, New versions of locating indices and their significance in predicting the physicochemical properties of benzenoid hydrocarbons, Symmetry, 14 (2022), 1–18. https://doi.org/10.3390/sym14051022 doi: 10.3390/sym14051022
![]() |
[25] |
S. Wazzan, H. Ahmed, Symmetry-adapted domination indices: The enhanced domination sigma index and its applications in QSPR studies of octane and its isomers, Symmetry, 15 (2023), 1–32. https://doi.org/10.3390/sym15061202 doi: 10.3390/sym15061202
![]() |
[26] |
S. Wazzan, N. U. Ozalan, Exploring the symmetry of curvilinear regression models for enhancing the analysis of fibrates drug activity through molecular descriptors, Symmetry, 15 (2023), 1–22. https://doi.org/10.3390/sym15061160 doi: 10.3390/sym15061160
![]() |
[27] |
K. C. Das, S. Mondal, On neighborhood inverse sum indeg index of molecular graphs with chemical significance, Inform. Sci., 623 (2023), 112–131. https://doi.org/10.1016/j.ins.2022.12.016 doi: 10.1016/j.ins.2022.12.016
![]() |
[28] |
M. Demirci, S. Delen, A. S. Cevik, I. N. Cangul, Omega index of line and total graphs, J. Math., 2021 (2021), 1–6. https://doi.org/10.1155/2021/5552202 doi: 10.1155/2021/5552202
![]() |
[29] |
N. U. Özalan, Some indices over a new algebraic graph, J. Math., 2021 (2021), 1–8. https://doi.org/10.1155/2021/5510384 doi: 10.1155/2021/5510384
![]() |
[30] |
B. H. Xing, N. U. Ozalan, J. B. Liu, The degree sequence on tensor and cartesian products of graphs and their omega index, AIMS Math., 8 (2023), 16618–16632. https://doi.org/10.3934/math.2023850 doi: 10.3934/math.2023850
![]() |
[31] | T. Doslic, M. Saheli, Eccentric connectivity index of composite graphs, Util. Math., 95 (2014), 3–22. |
[32] | W. C. Chen, H. Lu, Y. N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bull. Math., 21 (1997), 337–348. |
[33] | GaussView 6. Available from: https://gaussian.com/gaussview6/. |
[34] | M. J. Frisch, A. B Nielsen, H. P. Hratchian, Gaussian 09 programmer's reference, 2009. |
[35] |
B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, et al., Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules, J. Phys. Chem. A, 106 (2002), 6102–6113. https://doi.org/10.1021/jp020124t doi: 10.1021/jp020124t
![]() |
[36] |
P. Y. Chan, C. M. Tong, M. C. Durrant, Estimation of boiling points using density functional theory with polarized continuum model solvent corrections, J. Mol. Graph. Model., 30 (2011), 120–128. https://doi.org/10.1016/j.jmgm.2011.06.010 doi: 10.1016/j.jmgm.2011.06.010
![]() |
[37] |
A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem., 100 (1996), 16502–16513. https://doi.org/10.1021/jp960976r doi: 10.1021/jp960976r
![]() |
[38] |
Z. Raza, S. Akhter, Y. L. Shang, Expected value of first Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network, Front. Chem., 10 (2023), 1067874. https://doi.org/10.3389/fchem.2022.1067874 doi: 10.3389/fchem.2022.1067874
![]() |
[39] |
S. Nikolić, A. Miličević, N. Trinajstić, A. Jurić, On use of the variable Zagreb vM2 index in QSPR: Boiling points of benzenoid hydrocarbons, Molecules, 9 (2004), 1208–1221. https://doi.org/10.3390/91201208 doi: 10.3390/91201208
![]() |
[40] |
Ö. C. Havare, Quantitative structure analysis of some molecules in drugs used in the treatment of COVID-19 with topological indices, Polycycl. Aromat. Comp., 42 (2022), 5249–5260. https://doi.org/10.1080/10406638.2021.1934045 doi: 10.1080/10406638.2021.1934045
![]() |
[41] |
G. V. Rajasekharaiah, U. P. Murthy, Hyper-Zagreb indices of graphs and its applications, J. Algebra Combin. Discrete Struct. Appl., 8 (2021), 9–22. https://doi.org/10.13069/jacodesmath.867532 doi: 10.13069/jacodesmath.867532
![]() |
[42] |
F. C. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira, E. C. Muniz, Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: The Fi index, J. Mol. Liq., 165 (2012), 125–132. https://doi.org/10.1016/j.molliq.2011.10.019 doi: 10.1016/j.molliq.2011.10.019
![]() |
[43] |
S. A. K. Kirmani, P. Ali, J. Ahmad, Topological coindices and quantitative structure-property analysis of antiviral drugs investigated in the treatment of COVID-19, J. Chem., 2022 (2022), 1–15. https://doi.org/10.1155/2022/3036655 doi: 10.1155/2022/3036655
![]() |
[44] |
H. C. Liu, H. L. Chen, Q. Q. Xiao, X. N. Fang, Z. K. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem., 121 (2021), e26689. https://doi.org/10.1002/qua.26689 doi: 10.1002/qua.26689
![]() |
1. | Hajar F. Ismael, Haci Mehmet Baskonus, Hasan Bulut, Wei Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with M-fractional, 2023, 55, 0306-8919, 10.1007/s11082-023-04581-7 | |
2. | Nauman Raza, Abdel-Haleem Abdel-Aty, Traveling wave structures and analysis of bifurcation and chaos theory for Biswas–Milovic Model in conjunction with Kudryshov’s law of refractive index, 2023, 287, 00304026, 171085, 10.1016/j.ijleo.2023.171085 | |
3. | Hakima Khudher Ahmed, Hajar Farhan Ismael, Optical soliton solutions for the nonlinear Schrödinger equation with higher-order dispersion arise in nonlinear optics, 2024, 99, 0031-8949, 105276, 10.1088/1402-4896/ad78c3 | |
4. | Nirman Bhowmike, Zia Ur Rehman, Zarmeena Naz, Muhammad Zahid, Sultan Shoaib, Yasar Amin, Non-linear electromagnetic wave dynamics: Investigating periodic and quasi-periodic behavior in complex engineering systems, 2024, 184, 09600779, 114984, 10.1016/j.chaos.2024.114984 | |
5. | Saumya Ranjan Jena, Itishree Sahu, A novel approach for numerical treatment of traveling wave solution of ion acoustic waves as a fractional nonlinear evolution equation on Shehu transform environment, 2023, 98, 0031-8949, 085231, 10.1088/1402-4896/ace6de | |
6. | Ri Zhang, Muhammad Shakeel, Nasser Bin Turki, Nehad Ali Shah, Sayed M Tag, Novel analytical technique for mathematical model representing communication signals: A new travelling wave solutions, 2023, 51, 22113797, 106576, 10.1016/j.rinp.2023.106576 | |
7. | Exact Solutions of Beta-Fractional Fokas-Lenells Equation via Sine-Cosine Method, 2023, 16, 20710216, 10.14529/mmp230201 |