This paper marks a significant advancement in the field of chemoinformatics with the introduction of two novel topological indices: the forgotten eccentric neighborhood index (FENI) and the modified forgotten eccentric neighborhood index (MFENI). Uniquely developed for predicting the boiling points of various chemical substances, these indices offer groundbreaking tools in understanding and interpreting the thermal properties of compounds. The distinctiveness of our study lies in the in-depth exploration of the discriminative capabilities of FENI and MFENI. Unlike existing indices, they provide a nuanced capture of structural features essential for determining boiling points, a key factor in drug design and chemical analysis. Our comprehensive analyses demonstrate the superior predictive power of FENI and MFENI, highlighting their exceptional potential as innovative tools in the realms of chemoinformatics and pharmaceutical research. Furthermore, this study conducts an extensive investigation into their various properties. We present explicit results on the behavior of these indices in relation to diverse graph types and operations, including join, disjunction, composition and symmetric difference. These findings not only deepen our understanding of FENI and MFENI but also establish their practical versatility across a spectrum of chemical and pharmaceutical applications. Thus the introduction of FENI and MFENI represents a pivotal step forward in the predictive analysis of boiling points, setting a new standard in the field and opening avenues for future research advancements.
Citation: Suha Wazzan, Hanan Ahmed. Unveiling novel eccentric neighborhood forgotten indices for graphs and gaph operations: A comprehensive exploration of boiling point prediction[J]. AIMS Mathematics, 2024, 9(1): 1128-1165. doi: 10.3934/math.2024056
This paper marks a significant advancement in the field of chemoinformatics with the introduction of two novel topological indices: the forgotten eccentric neighborhood index (FENI) and the modified forgotten eccentric neighborhood index (MFENI). Uniquely developed for predicting the boiling points of various chemical substances, these indices offer groundbreaking tools in understanding and interpreting the thermal properties of compounds. The distinctiveness of our study lies in the in-depth exploration of the discriminative capabilities of FENI and MFENI. Unlike existing indices, they provide a nuanced capture of structural features essential for determining boiling points, a key factor in drug design and chemical analysis. Our comprehensive analyses demonstrate the superior predictive power of FENI and MFENI, highlighting their exceptional potential as innovative tools in the realms of chemoinformatics and pharmaceutical research. Furthermore, this study conducts an extensive investigation into their various properties. We present explicit results on the behavior of these indices in relation to diverse graph types and operations, including join, disjunction, composition and symmetric difference. These findings not only deepen our understanding of FENI and MFENI but also establish their practical versatility across a spectrum of chemical and pharmaceutical applications. Thus the introduction of FENI and MFENI represents a pivotal step forward in the predictive analysis of boiling points, setting a new standard in the field and opening avenues for future research advancements.
[1] | M. Randi$\text {c̀ }$, Generalized molecular descriptors. J. Math. Chem., 7 (1991), 155–168. https://doi.org/10.1007/BF01200821 doi: 10.1007/BF01200821 |
[2] | S. Nikolić, N. Trinajstić, The Wiener index: Development and applications, Croat. Chem. Acta, 68 (1995), 105–129. |
[3] | I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006 |
[4] | M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157 (2009), 804–811. https://doi.org/10.1016/j.dam.2008.06.015 doi: 10.1016/j.dam.2008.06.015 |
[5] | G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013), 213–220. |
[6] | H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005 |
[7] | A. A. Khabyah, S. Zaman, A. N. A. Koam, A. Ahmad, A. Ullah, Minimum Zagreb eccentricity indices of two-mode network with applications in boiling point and benzenoid hydrocarbons, Mathematics, 10 (2022), 1–18. https://doi.org/10.3390/math10091393 doi: 10.3390/math10091393 |
[8] | X. J. Wang, M. F. Hanif, H. Mahmood, S. Manzoor, M. K. Siddiqui, M. Cancan, On computation of entropy measures and their statistical analysis for complex benzene systems, Polycycl. Aromat. Comp., 43 (2023), 7754–7768. https://doi.org/10.1080/10406638.2022.2139734 doi: 10.1080/10406638.2022.2139734 |
[9] | F. Arjmand, F. Shafiei, Prediction of the normal boiling points and enthalpy of vaporizations of alcohols and phenols using topological indices, J. Struct. Chem., 59 (2018), 748–754. https://doi.org/10.1134/S0022476618030393 doi: 10.1134/S0022476618030393 |
[10] | I. Redžepović, B. Furtula, Predictive potential of eigenvalue-based topological molecular descriptors, J. Comput. Aided Mol. Des., 34 (2020), 975–982. https://doi.org/10.1007/s10822-020-00320-2 doi: 10.1007/s10822-020-00320-2 |
[11] | A. Rauf, M. Naeem, S. U. Bukhari, Quantitative structure-property relationship of Ev-degree and Ve-degree based topological indices: Physico-chemical properties of benzene derivatives, Int. J. Quantum Chem., 122 (2022), e26851. https://doi.org/10.1002/qua.26851 doi: 10.1002/qua.26851 |
[12] | Y. L. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881 |
[13] | M. Rizwan, A. A. Bhatti, M. Javaid, Y. L. Shang, Conjugated tricyclic graphs with maximum variable sum exdeg index, Heliyon, 9 (2023), E15706. https://doi.org/10.1016/j.heliyon.2023.e15706 doi: 10.1016/j.heliyon.2023.e15706 |
[14] | B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z |
[15] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $\varphi $-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[16] | E. D. Molina, J. M. Rodriguez, J. L. Sanchez, J. M. Sigarreta, Applications of the inverse degree index to molecular structures, J. Math. Chem., 2023. https://doi.org/10.1007/s10910-023-01526-z |
[17] | G. F. Su, S. Wang, J. F. Du, M. J. Gao, K. C. Das, Y. L. Shang, Sufficient conditions for a graph to be $\ell $-connected, $\ell $-deficient, $\ell $-Hamiltonian and $\ell $-independent in terms of the forgotten topological index, Mathematics, 10 (2022), 1–11. https://doi.org/10.3390/math10111802 doi: 10.3390/math10111802 |
[18] | H. Ahmed, M. R. Salestina, A. Alwardi, N. D. Soner, Forgotten domination, hyper domination and modified forgotten domination indices of graphs, J. Discrete Math. Sci. Cryptogr., 24 (2021), 353–368. https://doi.org/10.1080/09720529.2021.1885805 doi: 10.1080/09720529.2021.1885805 |
[19] | N. De, S. M. A. Nayeem, A. Pal, F-index of some graph operations, Discrete Math. Algorithms Appl., 8 (2016), 1650025. https://doi.org/10.1142/S1793830916500257 doi: 10.1142/S1793830916500257 |
[20] | H. S. Ramane, R. B. Jummannaver, Note on forgotten topological index of chemical structure in drugs, Appl. Math. Nonlinear Sci., 1 (2016), 369–374. https://doi.org/10.21042/AMNS.2016.2.00032 doi: 10.21042/AMNS.2016.2.00032 |
[21] | S. Mondal, N. De, A. Pal, Onsome new neighbourhood degree based indices, Acta Chem. Iasi, 27 (2019), 31–46. |
[22] | F. Harary, Graph theory, New Delhi: Narosa Publishing House, 2001. |
[23] | H. Ahmed, A. Saleh, R. Ismail, M. R. Salestina, A. Alameri, Computational analysis for eccentric neighborhood Zagreb indices and their significance, Heliyon, 9 (2023), E17998. https://doi.org/10.1016/j.heliyon.2023.e17998 doi: 10.1016/j.heliyon.2023.e17998 |
[24] | S. Wazzan, A. Saleh, New versions of locating indices and their significance in predicting the physicochemical properties of benzenoid hydrocarbons, Symmetry, 14 (2022), 1–18. https://doi.org/10.3390/sym14051022 doi: 10.3390/sym14051022 |
[25] | S. Wazzan, H. Ahmed, Symmetry-adapted domination indices: The enhanced domination sigma index and its applications in QSPR studies of octane and its isomers, Symmetry, 15 (2023), 1–32. https://doi.org/10.3390/sym15061202 doi: 10.3390/sym15061202 |
[26] | S. Wazzan, N. U. Ozalan, Exploring the symmetry of curvilinear regression models for enhancing the analysis of fibrates drug activity through molecular descriptors, Symmetry, 15 (2023), 1–22. https://doi.org/10.3390/sym15061160 doi: 10.3390/sym15061160 |
[27] | K. C. Das, S. Mondal, On neighborhood inverse sum indeg index of molecular graphs with chemical significance, Inform. Sci., 623 (2023), 112–131. https://doi.org/10.1016/j.ins.2022.12.016 doi: 10.1016/j.ins.2022.12.016 |
[28] | M. Demirci, S. Delen, A. S. Cevik, I. N. Cangul, Omega index of line and total graphs, J. Math., 2021 (2021), 1–6. https://doi.org/10.1155/2021/5552202 doi: 10.1155/2021/5552202 |
[29] | N. U. Özalan, Some indices over a new algebraic graph, J. Math., 2021 (2021), 1–8. https://doi.org/10.1155/2021/5510384 doi: 10.1155/2021/5510384 |
[30] | B. H. Xing, N. U. Ozalan, J. B. Liu, The degree sequence on tensor and cartesian products of graphs and their omega index, AIMS Math., 8 (2023), 16618–16632. https://doi.org/10.3934/math.2023850 doi: 10.3934/math.2023850 |
[31] | T. Doslic, M. Saheli, Eccentric connectivity index of composite graphs, Util. Math., 95 (2014), 3–22. |
[32] | W. C. Chen, H. Lu, Y. N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bull. Math., 21 (1997), 337–348. |
[33] | GaussView 6. Available from: https://gaussian.com/gaussview6/. |
[34] | M. J. Frisch, A. B Nielsen, H. P. Hratchian, Gaussian 09 programmer's reference, 2009. |
[35] | B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, et al., Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules, J. Phys. Chem. A, 106 (2002), 6102–6113. https://doi.org/10.1021/jp020124t doi: 10.1021/jp020124t |
[36] | P. Y. Chan, C. M. Tong, M. C. Durrant, Estimation of boiling points using density functional theory with polarized continuum model solvent corrections, J. Mol. Graph. Model., 30 (2011), 120–128. https://doi.org/10.1016/j.jmgm.2011.06.010 doi: 10.1016/j.jmgm.2011.06.010 |
[37] | A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem., 100 (1996), 16502–16513. https://doi.org/10.1021/jp960976r doi: 10.1021/jp960976r |
[38] | Z. Raza, S. Akhter, Y. L. Shang, Expected value of first Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network, Front. Chem., 10 (2023), 1067874. https://doi.org/10.3389/fchem.2022.1067874 doi: 10.3389/fchem.2022.1067874 |
[39] | S. Nikolić, A. Miličević, N. Trinajstić, A. Jurić, On use of the variable Zagreb vM2 index in QSPR: Boiling points of benzenoid hydrocarbons, Molecules, 9 (2004), 1208–1221. https://doi.org/10.3390/91201208 doi: 10.3390/91201208 |
[40] | Ö. C. Havare, Quantitative structure analysis of some molecules in drugs used in the treatment of COVID-19 with topological indices, Polycycl. Aromat. Comp., 42 (2022), 5249–5260. https://doi.org/10.1080/10406638.2021.1934045 doi: 10.1080/10406638.2021.1934045 |
[41] | G. V. Rajasekharaiah, U. P. Murthy, Hyper-Zagreb indices of graphs and its applications, J. Algebra Combin. Discrete Struct. Appl., 8 (2021), 9–22. https://doi.org/10.13069/jacodesmath.867532 doi: 10.13069/jacodesmath.867532 |
[42] | F. C. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira, E. C. Muniz, Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: The $Fi$ index, J. Mol. Liq., 165 (2012), 125–132. https://doi.org/10.1016/j.molliq.2011.10.019 doi: 10.1016/j.molliq.2011.10.019 |
[43] | S. A. K. Kirmani, P. Ali, J. Ahmad, Topological coindices and quantitative structure-property analysis of antiviral drugs investigated in the treatment of COVID-19, J. Chem., 2022 (2022), 1–15. https://doi.org/10.1155/2022/3036655 doi: 10.1155/2022/3036655 |
[44] | H. C. Liu, H. L. Chen, Q. Q. Xiao, X. N. Fang, Z. K. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem., 121 (2021), e26689. https://doi.org/10.1002/qua.26689 doi: 10.1002/qua.26689 |