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Abstract: This paper marks a significant advancement in the field of chemoinformatics with the
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the boiling points of various chemical substances, these indices offer groundbreaking tools in
understanding and interpreting the thermal properties of compounds. The distinctiveness of our study
lies in the in-depth exploration of the discriminative capabilities of FENI and MFENI. Unlike existing
indices, they provide a nuanced capture of structural features essential for determining boiling points, a
key factor in drug design and chemical analysis. Our comprehensive analyses demonstrate the superior
predictive power of FENI and MFENI, highlighting their exceptional potential as innovative tools in
the realms of chemoinformatics and pharmaceutical research. Furthermore, this study conducts an
extensive investigation into their various properties. We present explicit results on the behavior of
these indices in relation to diverse graph types and operations, including join, disjunction, composition
and symmetric difference. These findings not only deepen our understanding of FENI and MFENI but
also establish their practical versatility across a spectrum of chemical and pharmaceutical applications.
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analysis of boiling points, setting a new standard in the field and opening avenues for future research
advancements.
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1. Introduction

A topological index is a numerical representation derived from a graph’s structural arrangement,
independent of vertex labels. It remains consistent even for isomorphic graphs, indicating robustness.
In mathematical chemistry, the focus is on deriving these indices for chemical graphs, correlating with
intrinsic physicochemical attributes. This comes from the belief that molecular traits relate to atom
valences and positions. Graph-theoretical language effectively conveys these ideas, making chemical
graphs rich in real-world molecular information for precise modeling. According to Milan Randić [1], a
topological index’s acceptance depends on satisfying criteria: positive property correlations, structural
interpretation, insightful potential, adaptability, simplicity, non-triviality, effective composition and
rooted in structural abstractions. While some molecular attributes align clearly with indices, this
is not uniform, leading to doubts about engineered indices and coincidental correlations. Yet,
validating indices often involves understanding their relevance to molecular structure components
linked to properties. Even when comprehension is elusive, dismissing outcomes hastily is unwise.
Meticulous analysis might reveal overlooked physicochemical mechanisms. Given the complexity of
ab initio methods for molecular treatment, topological indices remain essential tools in mathematical
chemistry’s landscape. Numerous distinct topological indices have undergone extensive exploration
and application in QS AR/QS PR studies, yielding varying levels of effectiveness. Among the most
valuable constants are those that fall into two overarching categories: distance-derived or bond-
additive. The former group encompasses indices that find definition in vertex pair distances, while
the latter includes indices formed by aggregating contributions across all edges. In the first category,
the Wiener index and its various adaptations stand out [2], while the second category features indices
such as the Randić index [3] and the Zagreb indices pair [4, 5]. The initiation of topological indices
dates back to 1947, when chemist Wiener discovered the inaugural Wiener index [6]. This index was
devised to predict boiling points of chemical compounds and is defined as

W(ζ) =
1
2

∑
{u,v}∈V(ζ)

d(u, v). (1.1)

Building upon this initial index, a variety of new topological indices have been introduced
to improve the accuracy of boiling point predictions for diverse chemical compounds. Recent
advancements in this area are noteworthy. For an in-depth analysis of these developments in
boiling point prediction, please consult reference [7], which highlights a pivotal discovery, i.e.,
the boiling point of benzenoid hydrocarbons shows a stronger correlation with the first Zagreb
eccentricity index compared to the second. This crucial finding enhances our comprehension of
these compounds’ physical characteristics, opening new avenues for both their practical usage and
theoretical exploration. In [8], the authors achieved a significant result in their Quantitative Structure-
Property Relationship (QSPR) analysis: they were able to accurately predict the boiling points of these
compounds using the fifth nearest neighbor (5th NN) entropy method. This finding holds significant
importance due to the widespread application of benzene in diverse fields like pharmaceuticals, dyes
and lubricants. We encourage interested readers to consult [9–11]. In recent scholarly discourse,
there has been a notable surge of interest in the broader computational quandaries surrounding the
determination of topological indices and their algebraic operations [12] presents a simplicial network
model to capture complex higher-order interactions in various systems. It examines the network’s
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structure and derives the Sombor index, revealing key patterns like power-law behavior. The study
underscores the model’s effectiveness in understanding complex interactions. Also, [13] introduced
the variable sum exdeg index was originally used for predicting the octanol-water partition coefficient
of certain chemical compounds. It is a unique measure for a graph, calculated by summing up the
products of the degree of each vertex raised to the power of a positive real number, with the real number
being different from one. This paper, focuses on certain sub groups of tricyclic graphs. Identifying the
graph that has the highest variable sum exdeg index from each subgroup ensures that all these graphs
have perfect matching. This allows us to compare these graphs and determine which one in the larger
collection has the highest value of this index.

In 2015, B. Furtula and I. Gutman [14] defined the forgotten index, or F-index, as follows:

F(ζ) =
∑

v∈V(ζ)

d3
ζ (v) =

∑
uv∈E(ζ)

(d2
ζ (u) + d2

ζ (v)). (1.2)

In a seminal study [15], both the forgotten topological index and the first Zagreb index played
pivotal roles in computing the total π-electron energy. Acting as indicators, these indices enabled
the assessment of the intricate branching intricacies within the molecule’s carbon-atom framework.
Despite an initial lack of attention, the F-index has emerged as a focus of recent research, attributed
to the noteworthy investigation by Furtula and Gutman [15]. This study elucidated the F-index’s
underlying principles and unveiled its predictive prowess, akin to that of the first Zagreb index.
Remarkably, both indices exhibited strong correlation coefficients, exceeding 0.95, when linked with
entropy and acetic factor. Notably, [16] accentuated the significance of the F-index by showcasing
its accurate prognostication of the logarithm of the octanol-water partition coefficient. Sufficient
conditions for a graph to be ℓ-connected, ℓ-deficient, ℓ-Hamiltonian and ℓ-independent in terms of
the forgotten topological index is presented in [17]. The forgotten index assumes a crucial role
by upholding molecular structure symmetry, while providing a robust mathematical foundation to
anticipate the physicochemical attributes of molecules. Recent strides in understanding the forgotten
index and its diverse applications have been meticulously documented in contemporary works [18–21].
Motivated by this backdrop, our current study delves into unearthing a novel iteration of this index.
We specifically concentrate on its potential in predicting the boiling points of primary amines. By
expanding our understanding of this index’s capabilities, we aim to contribute to the advancement of
predictive models for molecular properties, enhancing their practical utility in various scientific and
industrial contexts.

Throughout this paper, we consider only simple connected graphs. For a graph ζ = (V(ζ), E(ζ)),
V(ζ) and E(ζ) denote the set of vertices and edges, respectively. The set ℵ(v) of all neighbors of v is
called the open neighborhood of v. Thus, ℵ(v) = {u ∈ V : uv ∈ E(ζ)}. The degree dζ(u) = d(u) of a
vertex u in ζ is defined as d(u) = |ℵ(v)|. The distance dζ(u, v) or d(u, v) [22] between two vertices in a
graph ζ is the length of the shortest path joining them. The eccentricity ε(u) = maxv∈V(ζ)d(u, v). The
radius of ζ is r(ζ) = minv∈V(ζ) ε(v), and the diameter of ζ is D(ζ) = maxv∈V(ζ) ε(v). For any graph ζ with
n vertices, we define Vω(ζ) = {v ∈ V(ζ) : ε(v) = 1}. In [23], Ahmed et al. introduced new degree-based
topological indices known as eccentric neighborhood Zagreb indices which are defined as follows: Let
ζ = (V(ζ), E(ζ)) be a connected simple graph and δen(v) =

∑
u∈ℵ(v) ε(u) be the eccentricity neighborhood

degree. Then, the first, second and third eccentric neighborhood Zagreb indices are defined as follows:

EℵM1(ζ) =
∑

v∈V(ζ)

δ2
en(v), (1.3)
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EℵM2(ζ) =
∑

uv∈E(ζ)

δen(u)δen(v), (1.4)

EℵM3(ζ) =
∑

uv∈E(ζ)

(δen(u) + δen(v)). (1.5)

Continuing along this research trajectory, our investigation delves into the intricate dynamics of the
eccentric neighborhood forgotten index and the eccentric neighborhood modified forgotten index. We
systematically analyze their behavior in response to a spectrum of graph operations. Notably, our
inquiry extends to the application of these findings within the domain of molecular graphs, with a
specific focus on primary amines groups. In recent scholarly discourse, there has been a notable
surge of interest in the broader computational quandaries surrounding the determination of topological
indices and their algebraic operations [24–30]. In this intellectual milieu, we make a significant
contribution by introducing and rigorously defining the eccentric neighborhood forgotten index and
the eccentric neighborhood modified forgotten index. Their precise formulations are as follows:

EℵF(ζ) =
∑

v∈V(ζ)

δ3
en(v), (1.6)

EℵF∗(ζ) =
∑

uv∈E(ζ)

(δ2
en(u) + δ2

en(v)). (1.7)

In this study, our presentation follows a structured and methodical progression.
Section 2 introduces preliminary findings, laying a foundational groundwork for the more intricate

discussions that ensue. In Subsection 2.1, we delve into the computational methodologies associated
with two distinct indices: the eccentric neighborhood forgotten index (ENFI) and its modified
counterpart, the modified eccentric neighborhood forgotten index (MENFI). Our exploration will
encompass their applicability across a diverse range of graph structures. An integral component of
this subsection will be dedicated to the nuances of graph products, a specialized category within graph
operations. As we transition further into Subsection 2.1, we provide an in-depth analysis of how these
indices integrate seamlessly into the expansive domain of graph theory. Section 3 pivots our focus
towards the pragmatic relevance of topological indices, emphasizing their pivotal role in predicting
specific physicochemical attributes. To substantiate our assertions, we employ the robust technique
of nonlinear regression analysis. Our choice of primary amines as the subject of study is motivated
by their structural heterogeneity, positioning them as ideal candidates for this analytical endeavor.
Within this context, we juxtapose the Wiener index with ENFI and MENFI, aiming to discern potential
correlations between these indices and the boiling points intrinsic to primary amines. Finally, Section 4
contains our conclusions and reflections on the study.

2. Preliminaries

In this section, we present a set of preliminary results that will serve as essential foundations for
the subsequent segments of the paper. These preliminary findings are integral for establishing the
groundwork necessary to advance the discussion further.

Lemma 2.1. [5] Let ζ1 and ζ2 be graphs. Then,
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(a) dζ1× ζ2(u, v) = dζ1(u) + dζ2(v),

(b) dζ1[ζ2](u, v) = |V(ζ2)|dζ1(u) + dζ2(v),

(c) dζ1+ ζ2(u) =
{

dζ1(u) + |V(ζ2)|, u ∈ V (ζ1) ;
dζ2(u) + |V(ζ1)|, u ∈ V (ζ2) .

(d) dζ1∨ ζ2(u, v) = |V(ζ2)|dζ1(u) + |V(ζ1)|dζ2(v) − dζ1(u)dζ2(v),

(e) dζ1⊕ ζ2(u, v) = |V(ζ2)|dζ1(u) + |V(ζ1)|dζ2(v) − 2dζ1(u)dζ2(v).

(f) |V(ζ1 × ζ2)| = |V(ζ1 ∨ ζ2)| = |V(ζ1[ζ2])| = |V(ζ1 ⊕ ζ2)| = |V(ζ1)||V(ζ2)|,
|E(ζ1 × ζ2)| = |E(ζ1)||V(ζ2)| + |V(ζ1)||E(ζ2)|,
|E(ζ1 + ζ2)| = |E(ζ1)| + |E(ζ2)| + |V(ζ1)||V(ζ2)|,
|E(ζ1[ζ2])| = |E(ζ1)||V(ζ2)|2 + |E(ζ2)||V(ζ1)|,
|E(ζ1 ∨ ζ2)| = |E(ζ1)||V(ζ2)|2 + |E(ζ2)||V(ζ1)|2 − 2|E(ζ1)||E(ζ2)|,
|E(ζ1 ⊕ ζ2)| = |E(ζ1)||V(ζ2)|2 + |E(ζ2)||V(ζ1)| − 4|E(ζ1)||E(ζ2)|.

Lemma 2.2. [31] Suppose ζ1 and ζ2 be graphs. Then,

(a) εζ1+ ζ2(u) =
{

1, if εζi (u) = 1;
2, if εζi (u) ≥ 2,

where i ∈ {1, 2}.

(b) εζ1∨ ζ2(u, v) =
{

1, if εζ1 (u) = εζ2 (v) = 1;
2, if εζ1 (u) ≥ 2 or εζ2 (v) ≥ 2.

(c) εζ1[ζ2](u, v) =


1, if εζ1 (u) = εζ2 (v) = 1;
2, if εζ1 (u) = 2 or εζ2 (v) ≥ 2;
εζ1(u), if εζ1 (u) ≥ 2.

(d) εζ1⊕ζ2(u, v) = 2.

Corollary 2.1. [19]

F(ζ + F ) =F(ζ) + F(F ) + 3
(
V(F )M1(ζ) + V(ζ)M1(F )

)
+ 6

(
V(F )2|E(ζ)| + V(ζ)2|E(F )|

)
+ (V(F ))3V(ζ) + (V(ζ))3(F ).

Theorem 2.1. [19]

F(ζ[F ]) = (V(F ))4F(ζ) + V(ζ)F(F ) + 6(V(F ))2|E(F )|M1(ζ) + 6V(F )|E(ζ)|M1(F ).

Theorem 2.2. [19]

F(ζ ∨ F ) =(V(F ))4F(ζ) + (V(ζ))4F(F ) − F(ζ)F(F ) + 6V(ζ)(V(F ))2|E(F )|M1(ζ)
+ 6(V(ζ))2V(F )|E(ζ)|M1(F ) + 3V(F )F(ζ)M1(F ) + 3V(ζ)F(F )M1(ζ)
− 6(V(F ))2|E(F )|F(ζ) − 6(V(ζ))2|E(ζ)|F(F ) − 6V(ζ)V(F )M1(ζ)M1(F ).

Theorem 2.3. [19]

F(ζ ⊕ F ) =(V(F ))4F(ζ) + (V(ζ))4F(F ) − 8F(ζ)F(F ) + 6V(ζ)(V(F ))2|E(F )|M1(ζ)
+ 6(V(ζ))2V(F )|E(ζ)|M1(F ) + 12V(F )F(ζ)M1(F ) + 12V(ζ)F(F )M1(ζ)
− 12(V(F ))2|E(F )|F(ζ) − 12(V(ζ))2|E(ζ)|F(F ) − 12V(ζ)V(F )M1(ζ)M1(F ).
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Theorem 2.4. [19]

F(ζ × F ) = V(F )F(ζ) + V(ζ)F(F ) + 6|E(F )|M1(ζ) + 6|E(ζ)|M1(F ).

Lemma 2.3. [23]

(1) If ζ � S r is a star graph with r + 1 vertices, then

δen(v) =
{

1, if v is pendent vertex;
2r, if v is the center.

(2) If ζ � S r,s is the double star with r + s + 2 vertices, then

δen(v) =


2, if v is pendent vertex;
3r + 2, if v is the center in first star;
3s + 2, if v is the center in second star.

(3) If ζ � Cn with n ≥ 4, then

δen(v) =
{

n, if n is even;
n − 1, if n is odd.

(4) If ζ � Wn is the wheel graph with n ≥ 5 vertices, then

δen(v) =
{

2n − 2, if v is the center vertex;
5, otherwise.

Proposition 2.1. [23] Let ζ be a graph with D(ζ) = r(ζ) = t. Then,

EℵM1(ζ) = t2M1(ζ), EℵM2(ζ) = t2M2(ζ), EℵM3(ζ) = tM1(ζ).

2.1. Computing ENFI and MENFI of graphs and graph operations

Within this section, we provide explicit formulas detailing the computation of ENFI and MENFI
for various graph classes. Additionally, we explore graph operations stemming from binary graph
operations, specifically recognized as graph products.

Proposition 2.2. (1) For star graph S r with r+1 vertices, we have EℵF(S r) = 8r3+r and EℵF∗(S r) =
4r3 + r.

(2) If ζ � S r,s with r + s + 2 vertices, then

EℵF(S r,s) =27(r3 + s3) + 54(r2 + s2) + 44(r + s) + 16,
EℵF∗(S r,s) =9(r∗ + s3) + 21(r2 + s2) + 20(r + s) + 8.

(3) Suppose ζ � Cn, n ≥ 4. Then,

EℵF(Cn) =
{

n4, if n is even;
n(n − 1)3, if n is odd.

EℵF∗(Cn) =
{

2n3, if n is even;
2n3 − 4n + 2n, if n is odd.
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(4) If ζ � Wn is the wheel graph with n ≥ 5 vertices, then

EℵF(Wn) =8n3 − 24n2 + 149n − 133,
EℵF∗(Wn) =4n3 − 12n2 + 87n − 79.

A banana tree of type (r, s), denoted as Br,s according to the definition by Chan et al. [32], is a graph
formed by linking a single leaf from each of r instances of an s-star graph with a unique root vertex
that is separate from all the s-stars.

Lemma 2.4. [23] Let ζ � Br,s with r ≥ 2 and s ≥ 3 and w as the root vertex. Then,

δen(v) =


5, if v is pendent vertex;
4r, if v = w;
6s − 8, if v is the center vertex;
8, if v ∈ {v : vw ∈ E

(
Br,s

)
}.

Proposition 2.3. If ζ � Br,s with r ≥ 2 and s ≥ 3, then

EℵF(Br,s) = 64r3 + 216s3r − 864s2r + 1277sr − 250r,

EℵF∗(Br,s) = 16r3 + 14r + 36s3r − 132s2r + 185sr.

Proof. Suppose ζ � Br,s with r ≥ 2 and s ≥ 3. One can define the edge partitions of ζ as following:
E1 = {uv ∈ E(ζ) : δen(u) = 4r, δen(v) = 8}, E2 = {uv ∈ E(ζ) : δen(u) = 8, δen(v) = 6s − 8} and
E3 = {uv ∈ E(ζ) : δen(u) = 6s − 8, δen(v) = 5}. Note that |E1| = |E2| = r and |E3| = r(s − 2). Hence, by
applying Eqs (1.6) and (1.7) we get the required result. □

Proposition 2.4. If δen (u) ≤ Dd (u) and rd (u) ≤ δen (u), then

r3F (ζ) ≤ EℵF (ζ) ≤ D3F (ζ) ,
r2F (ζ) ≤ EℵF∗ (ζ) ≤ D2F (ζ) .

2.1.1. Join

A join [5] ζ + F of ζ and F with disjoint vertex sets V(ζ) and V(F ) is the graph on the vertex set
V(ζ) ∪ V(F ) and the edge set E(ζ) ∪ E(F ) ∪ {u1u2 : u1 ∈ V(ζ), u2 ∈ V(F )}.

Lemma 2.5. [23] Let ζ and F be any two graphs. Then,

(a) If Vω(ζ) = Vω(F ) = ∅, then δenζ+F (u) = 2dζ+F (u);

(b) If |Vω(ζ)| = r and |Vω(F )| = s such that r + s > 0, then

δenζ+F (u) =


2dζ(u) + 2|V(F )| − (r + s), if u ∈ V (ζ) , u < Vω (ζ) ;
2dζ(u) + 2|V(F )| + 1 − (r + s), if u ∈ V (ζ) , u ∈ Vω (ζ) ;
2dF (u) + 2|V(ζ)| − (r + s), if u ∈ V (F ) , u < Vω (F ) ;
2dF (u) + 2|V(ζ)| + 1 − (r + s), if u ∈ V (F ) , u ∈ Vω (F ) .
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We can partition the edge set of E(ζ + F ) as follows:
The partition of edges of the graph ζ are: E1

1 is the set of edges connecting the vertices which are
not in Vω(ζ), E2

1 is the set of edges connecting the vertices of the set Vω(ζ) and E3
1 be the set of edges

connecting vertices of Vω(ζ) to vertices which are not in Vω(ζ). The partition of edges of the graph F
are: E1

2 is the set of edges connecting the vertices not in Vω(F ), E2
2 is the set of edges connecting the

vertices of the set Vω(F ) and E3
2 is the set of edges connecting vertices of Vω(F ) to vertices which are

not in Vω(F ). The edge partition connecting vertices of ζ with vertices of F are: E1
3 is the set of edges

connecting the vertices not in Vω(ζ) with the vertices not in Vω(F ), E2
3 is the set of edges connecting the

vertices not in Vω(ζ) with the vertices of the set Vω(F ), E3
3 is the set of edges connecting the vertices

of the set Vω(ζ) with the vertices not in Vω(F ) and E4
3 is the set of edges connecting the vertices of the

set Vω(ζ) with the vertices of the set Vω(F ). Figure 1 outlines the procedural steps involved in proving
the subsequent theorem.

Figure 1. Flowchart of Theorem 2.5.

Theorem 2.5. For any two graphs ζ and F with |Vω(ζ)| = r, |Vω(F )| = s and r + s > 0. Then,

EℵF(ζ + F ) =8

 ∑
u∈V(ζ)

(ds (u) + n2)3 +
∑

u∈V(F )

(
(ds (u) + n1)3

)
− 12 (r + s)


∑

u∈V(ζ)
u<Vω(ζ)

d2
ζ (u) +

∑
u∈V(F )

u<Vω(F )

d2
F

(u)


− 12 (r + s − 1)


∑

u∈V(ζ)
u∈Vω(ζ)

d2
ζ (u) +

∑
u∈V(F )

u∈Vω(F )

d2
F

(u)
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+
(
6 (r + s)2

− 24n2 (r + s)
) ∑

u∈V(ζ)
u<Vω(ζ)

dζ (u)

+
(
6 (r + s − 1)2

− 24n2 (r + s − 1)
) ∑

u∈V(ζ)
u∈Vω(ζ)

dζ (u)

+
(
6 (r + s)2

− 24n1 (r + s)
) ∑

u∈V(F )
u<Vω(F )

dF (u)

+
(
6 (r + s − 1)2

− 24n2 (r + s − 1)
) ∑

u∈V(F )
u∈Vω(F )

dF (u)

+
(
6n2 (r + s)2

− 12n2
2 (r + s) − (r + s)3

)
(n1 − r)

+
(
6n1‘ (r + s)2

− 12n2
1 (r + s) − (r + s)3

)
(n2 − s)

+
(
6n2 (r + s − 1)2

− 12n2
2 (r + s − 1) − (r + s − 1)3

)
r

+
(
6n1 (r + s − 1)2

− 12n2
1 (r + s − 1) − (r + s − 1)3

)
s

and

EℵF∗(ζ + F ) =4 (F (ζ) + F (F )) + 8 (n2M1 (ζ) + n1M1 (F ))

− 4 (r + s)


∑

uv∈E1
1

(
dζ (u) + dζ (v)

)
+

∑
uv∈E1

2
(dF (u) + dF (v))

+
∑

uv∈E1
3

u<Vω(ζ)
v<Vω(F )

(
dζ (u) + dF (v)

) 
− 4 (r + s − 1)


∑

uv∈E2
1

(
dζ (u) + dζ (v)

)
+

∑
uv∈E2

2
(dF (u) + dF (v))

+
∑

uv∈E4
3

u∈Vω(ζ)
v∈Vω(F )

(
dζ (u) + dF (v)

) 

− 4



∑
uv∈E3

1
u<Vω(ζ)
v∈Vω(ζ)

(
(r + s) dζ (u) + (r + s − 1) dζ (v)

)
+

∑
uv∈E3

2
u<Vω(F )
v∈Vω(F )

((r + s) dF (u) + (r + s − 1) dF (v))

+
∑

uv∈E2
3

u<Vω(ζ)
v∈Vω(F )

(
(r + s) dζ (u) + (r + s − 1) dF (v)

)
+

∑
uv∈E3

3
u∈Vω(ζ)
v<Vω(F )

(
(r + s − 1) dζ (u) + (r + s) dF (v)

)


+ 4

∑
u∈V(ζ)
v∈V(F )

(
d2
ζ (u) + d2

F
(v)

)
+ 8

∑
u∈V(ζ)
v∈V(F )

(
n2dζ (u) + n1dF (v)

)
+

(
8n2

2 + 2 (r + s)2
− 8n2 (r + s)

) ∣∣∣E1
1

∣∣∣
+

[
8n2

2 − 8n2 (r + s − 1) + 2 (r + s − 1)2
] ∣∣∣E2

1

∣∣∣
+

[
4n2 (2n2 − 2 (r + s) + 1) + 2

(
r2 + s2

)
− 2 (r + s) + 4rs + 1

] ∣∣∣E3
1

∣∣∣
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+
(
8n2

1 − 8n1 (r + s) + 2 (r + s)2
) ∣∣∣E1

2

∣∣∣
+

(
8n2

1 − 8n1 (r + s − 1) + 2 (r + s − 1)2
) ∣∣∣E2

2

∣∣∣
+

(
4n1 (2n1 − 2 (r + s) + 1) + 2

(
r2 + s2

)
− 2 (r + s) + 4rs + 1

) ∣∣∣E3
2

∣∣∣
+

[
4
(
n2

1 + n2
2

)
− 4 (r + s) (n1 + n2) + 2 (r + s)2

] ∣∣∣E1
3

∣∣∣
+

 4
(
n2

1 + n2
2

)
− 4 (n2 (r + s) + n1 (r + s − 1))
+ (r + s)2 + (r + s − 1)2

 ∣∣∣E2
3

∣∣∣
+

 4
(
n2

1 + n2
2

)
− 4 (n2 (r + s − 1) + n1 (r + s))
+ (r + s)2 + (r + s − 1)2

 ∣∣∣E3
3

∣∣∣
+

[
4
(
n2

1 + n2
2

)
− 4 (r + s − 1) (n1 + n2) + 2 (r + s − 1)2

] ∣∣∣E4
3

∣∣∣ .
Proof. We have

EℵF(ζ + F ) =
∑

v∈V(ζ+F )

δ3
en(ζ+F )(u)

=

1︷              ︸︸              ︷∑
u∈V(ζ)

u<Vω(ζ)

δ3
en(ζ+F )(u)+

2︷              ︸︸              ︷∑
u∈V(ζ)

u∈Vω(ζ)

δ3
en(ζ+F )(u)+

3︷               ︸︸               ︷∑
u∈V(F )

u<Vω(F )

δ3
en(ζ+F )(u)+

4︷               ︸︸               ︷∑
u∈V(F )

u∈Vω(F )

δ3
en(ζ+F )(u) . (2.1)

For (2.1)(1),

1︷              ︸︸              ︷∑
u∈V(ζ)

u<Vω(ζ)

δ3
en(ζ+F )(u) =

∑
u∈V(ζ)

u<Vω(ζ)

(
2dζ (u) + 2n2 − (r + s)

)3

=
∑

u∈V(ζ)
u<Vω(ζ)



8d3
ζ (u) + 16n2d2

ζ (u) + 8n2
2dζ (u)−

8 (r + s) d2
ζ (u) − 8n2 (r + s) dζ (u) + 2 (r + s)2 dζ (u)

+8n2d2
ζ (u) + 16n2

2dζ (u) + 8n3
2 − 8n2 (r + s) dζ (u)

−8n2
2 (r + s) + 2n2 (r + s)2

− 4 (r + s) d2
ζ (u)

−8n2 (r + s) dζ (u) − 4n2
2 (r + s) + 4 (r + s) dζ (u)

+4n2 (r + s)2
− (r + s)3


=

∑
u∈V(ζ)

u<Vω(ζ)


8d3
ζ (u) + 24n2d2

ζ (u) + 24n2
2dζ (u) + 8n3

2 − 12 (r + s) d2
ζ (u)

−24n2 (r + s) dζ (u) + 6 (r + s)2 dζ (u) − 12n2
2 (r + s)+

6n2 (r + s)2
− (r + s)3


=8

∑
u∈V(ζ)

u<Vω(ζ)

(
dζ (u) + n2

)3
− 12 (r + s)

∑
u∈V(ζ)

u<Vω(ζ)

d2
ζ (u)

+
(
6 (r + s)2

− 24n2 (r + s)
) ∑

u∈V(ζ)
u<Vω(ζ)

dζ (u)

+
[
6n2 (r + s)2

− 12n2
2 (r + s) − (r + s)3

]
(n1 − r) .
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For (2.1)(2),

2︷              ︸︸              ︷∑
u∈V(ζ)

u∈Vω(ζ)

δ3
en(ζ+F )(u) =

∑
u∈V(ζ)

u∈Vω(ζ)

(
2dζ (u) + 2n2 − (r + s − 1)

)3

=
∑

u∈V(ζ)
u∈Vω(ζ)



8d3
ζ (u) + 16n2d2

ζ (u) + 8n2
2dζ (u)−

8 (r + s − 1) d2
ζ (u) − 8n2 (r + s − 1) dζ (u) + 2 (r + s − 1)2 dζ (u)

+8n2d2
ζ (u) + 16n2

2dζ (u) + 8n3
2 − 8n2 (r + s − 1) dζ (u)

−8n2
2 (r + s − 1) + 2n2 (r + s − 1)2

− 4 (r + s − 1) d2
ζ (u)

−8n2 (r + s − 1) dζ (u) − 4n2
2 (r + s − 1) + 4 (r + s − 1) dζ (u)

+4n2 (r + s − 1)2
− (r + s − 1)3


=8

∑
u∈V(ζ)

u∈Vω(ζ)

(
dζ (u) + n2

)3
− 12 (r + s − 1)

∑
u∈V(ζ)

u∈Vω(ζ)

d2
ζ (u)

+
(
2 (r + s − 1)2 + 4 (r + s − 1)2

− 24n2 (r + s − 1)
) ∑

u∈V(ζ)
u∈Vω(ζ)

dζ (u)

+

(
4n2 (r + s − 1)2 + 2n2 (r + s − 1)2

−12n2
2 (r + s − 1) − (r + s − 1)3

)
r

=8
∑

u∈V(ζ)
u∈Vω(ζ)

(
dζ (u) + n2

)3
− 12 (r + s − 1)

∑
u∈V(ζ)

u∈Vω(ζ)

d2
ζ (u)

+ (6 (r + s − 1) − 24n2 (r + s − 1))
∑

u∈V(ζ)
u∈Vω(ζ)

dζ (u)

+
[
6n2 (r + s − 1)2

− 12n2
2 (r + s − 1) − (r + s − 1)3

]
r.

For (2.1)(3),

3︷               ︸︸               ︷∑
u∈V(F )

u<Vω(F )

δ3
en(ζ+F )(u) =

∑
u∈V(F )

u<Vω(F )

(2dF (u) + 2n1 − (r + s))3

=8
∑

u∈V(F )
u<Vω(F )

(dF (u) + n1)3
− 12 (r + s)

∑
u∈V(F )

u<Vω(F )

d2
F

(u)

+
(
6 (r + s)2

− 24n1 (r + s)
) ∑

u∈V(F )
u<Vω(F )

dF (u)

+
(
6n1 (r + s)2

− 12n2
1 (r + s) − (r + s)3

)
(n1 − s) .

For (2.1)(4),
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4︷               ︸︸               ︷∑
u∈V(F )

u∈Vω(F )

δ3
en(ζ+F )(u) =

∑
u∈V(F )

u∈Vω(F )

(2dF (u) + 2n1 − (r + s − 1))3

=8
∑

u∈V(F )
u∈Vω(F )

(dF (u) + n1)3
− 12 (r + s − 1)

∑
u∈V(F )

u∈Vω(F )

d2
F

(u)

+
(
6 (r + s − 1)2

− 24n1 (r + s − 1)
) ∑

u∈V(F )
u∈Vω(F )

dF (u)

+
(
6n1 (r + s − 1)2

− 12n2
1 (r + s − 1) − (r + s − 1)3

)
s.

Combining (2.1)(1), (2.1)(2), (2.1)(3) and (2.1)(4), we arrive at the necessary result. For MENI, we have

EℵF∗(ζ + F ) =
∑

uv∈E(ζ+F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=

5︷                                 ︸︸                                 ︷∑
uv∈E(ζ)

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))+

6︷                                  ︸︸                                  ︷∑
uv∈E(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) (2.2)

+

7︷                                 ︸︸                                 ︷∑
u∈V(ζ)
v∈V(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) .

For (2.2)(5),

5︷                                 ︸︸                                 ︷∑
uv∈E(ζ)

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=

∗︷                                   ︸︸                                   ︷∑
uv∈E1

1
u,v<Vω(ζ)

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))+

∗∗︷                                   ︸︸                                   ︷∑
uv∈E2

1
u,v∈Vω(ζ)

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

+

∗∗∗︷                                 ︸︸                                 ︷∑
uv∈E3

1
u∈Vω(ζ)
v<Vω(ζ)

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

Now,
∗︷                                ︸︸                                ︷∑

uv∈E1
1

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) =
∑

uv∈E1
1

 (2dζ (u) + 2n2 − (r + s))2

+
(
2dζ (v) + 2n2 − (r + s)

)2


=4

∑
uv∈E1

1

[(
dζ (u) + n2

)2
+

(
dζ (v) + n2

)2
]
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− 4 (r + s)
∑

uv∈E1
1

(
dζ (u) + dζ (v)

)
+

[
2 (r + s)2

− 8n2 (r + s)
] ∣∣∣E1

1

∣∣∣
=4

∑
uv∈E1

1

(
d2
ζ (u) + d2

ζ (v)
)

+ (8n2 − 4 (r + s))
∑

uv∈E1
1

(
dζ (u) + dζ (v)

)
+

(
8n2

2 + 2 (r + s)2
− 8n2 (r + s)

) ∣∣∣E1
1

∣∣∣ .
Also,

∗∗︷                                ︸︸                                ︷∑
uv∈E2

1

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) =
∑

uv∈E2
1

 (2dζ (u) + 2n2 − (r + s − 1))2

+
(
2dζ (v) + 2n2 − (r + s − 1)

)2


=

∑
uv∈E2

1


4d2
ζ (u) + 8n2dζ (u) − 4 (r + s − 1) dζ (u)
+4n2

2 − 4n2 (r + s − 1) + (r + s − 1)2 +

4d2
ζ (v) + 8n2dζ (v) − 4 (r + s − 1) dζ (v)+
4n2

2 − 4n2 (r + s − 1) + (r + s − 1)2


=4

∑
uv∈E2

1

(
d2
ζ (u) + d2

ζ (v)
)
+ 8n2

∑
uv∈E2

1

(
dζ (u) + dζ (v)

)
+

[
8n2

2 − 8n2 (r + s − 1) + 2 (r + s − 1)2
] ∣∣∣E2

1

∣∣∣
− 4 (r + s − 1)

∑
uv∈E2

1

(
dζ (u) + dζ (v)

)
=4

∑
uv∈E2

1

(
d2
ζ (u) + d2

ζ (v)
)

+ (8n2 − 4 (r + s − 1))
∑

uv∈E2
1

(
dζ (u) + dζ (v)

)
+

[
8n2

2 − 8n2 (r + s − 1) + 2 (r + s − 1)2
] ∣∣∣E2

1

∣∣∣ .
Furthermore,

∗∗∗︷                                 ︸︸                                 ︷∑
uv∈E3

1
u∈Vω(ζ)
v<Vω(ζ)

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) =
∑

uv∈E3
1

u∈Vω(ζ)
v<Vω(ζ)

 (2dζ (u) + 2n2 − (r + s))2

+
(
2dζ (v) + 2n2 − (r + s − 1)

)2



=
∑

uv∈E3
1

u∈Vω(ζ)
v<Vω(ζ)


4d2
ζ (u) + 8n2dζ (u) + 4n2

2 − 4 (r + s) dζ (u)
−4n2 (r + s) + (r + s)2 + 4d2

ζ (v) + 8n2dζ (v)
−4 (r + s − 1) dζ (v) + 4n2

2−

4n2 (r + s − 1) + (r + s − 1)2
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=4
∑

uv∈E3
1

u∈Vω(ζ)
v<Vω(ζ)

(
d2
ζ (u) + d2

ζ (v)
)
+ 8n2

∑
uv∈E3

1
u∈Vω(ζ)
v<Vω(ζ)

(
dζ (u) + dζ (v)

)

− 4
∑

uv∈E3
1

u∈Vω(ζ)
v<Vω(ζ)

(
(r + s) dζ (u) + (r + s − 1) dζ (v)

)

+

[
4n2 (2n2 − (r + s) − (r + s − 1))
+ (r + s)2 + (r + s − 1)2

] ∣∣∣E3
1

∣∣∣
=4

∑
uv∈E3

1
u∈Vω(ζ)
v<Vω(ζ)

(
d2
ζ (u) + d2

ζ (v)
)
+ 8n2

∑
uv∈E3

1
u∈Vω(ζ)
v<Vω(ζ)

(
dζ (u) + dζ (v)

)

− 4
∑

uv∈E3
1

u∈Vω(ζ)
v<Vω(ζ)

(
(r + s) dζ (u) + (r + s − 1) dζ (v)

)

+

 4n2 (2n2 − 2 (r + s) + 1) + 2
(
r2 + s2

)
−2 (r + s) + 4rs + 1

 ∣∣∣E3
1

∣∣∣ .
Hence,

5︷                                 ︸︸                                 ︷∑
uv∈E(ζ)

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4F (ζ) + 8n2M1 (ζ) − 4


(r + s)

∑
uv∈E1

1

(
dζ (u) + dζ (v)

)
+

(r + s − 1)
∑

uv∈E2
1

(
dζ (u) + dζ (v)

)
+∑

uv∈E3
1

u∈Vω(ζ)
v<Vω(ζ)

(
(r + s) dζ (u) + (r + s − 1) dζ (v)

)


+
(
8n2

2 + 2 (r + s)2
− 8n2 (r + s)

) ∣∣∣E1
1

∣∣∣ + [
8n2

2 − 8n2 (r + s − 1) + 2 (r + s − 1)2
] ∣∣∣E2

1

∣∣∣
+

 4n2 (2n2 − 2 (r + s) + 1) + 2
(
r2 + s2

)
−2 (r + s) + 4rs + 1

 ∣∣∣E3
1

∣∣∣ .
Now, we initiate the computation process.

6︷                                  ︸︸                                  ︷∑
uv∈E(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=

∗︷                                ︸︸                                ︷∑
uv∈E1

2

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))+

∗∗︷                                ︸︸                                ︷∑
uv∈E2

2

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

+

∗∗∗︷                                ︸︸                                ︷∑
uv∈E3

2

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) .
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First,

∗︷                                ︸︸                                ︷∑
uv∈E1

2

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) =
∑

uv∈E1
2

[
(2dF (u) + 2n1 − (r + s))2

+ (2dF (v) + 2n1 − (r + s))2

]
=4

∑
uv∈E1

2

(
d2
F

(u) + d2
F

(v)
)
+ (8n1 − 4 (r + s))

∑
uv∈E1

2

(dF (u) + dF (v))

+
(
8n2

1 − 8n1 (r + s) + 2 (r + s)2
) ∣∣∣E1

2

∣∣∣ .
Second,

∗∗︷                                ︸︸                                ︷∑
uv∈E2

2

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4
∑

uv∈E2
2

(
d2
F

(u) + d2
F

(v)
)
+ (8n1 − 4 (r + s − 1))

∑
uv∈E2

2

(dF (u) + dF (v))

+
(
8n2

1 − 8n1 (r + s − 1) + 2 (r + s − 1)2
) ∣∣∣E2

2

∣∣∣ .
Third,

∗∗∗︷                                  ︸︸                                  ︷∑
uv∈E3

2
u<Vω(F )
v∈Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) =4
∑

uv∈E3
2

u<Vω(F )
v∈Vω(F )

(
d2
F

(u) + d2
F

(v)
)
+ 8n1

∑
uv∈E3

2
u<Vω(F )
v∈Vω(F )

(dF (u) + dF (v))

− 4
∑

uv∈E3
2

u<Vω(F )
v∈Vω(F )

[(r + s) dF (u) + (r + s − 1) dF (v)]

+

 4n1 (2n1 − 2 (r + s) + 1) + 2
(
r2 + s2

)
−2 (r + s) + 4rs + 1

 ∣∣∣E3
2

∣∣∣ .
Hence,

6︷                                  ︸︸                                  ︷∑
uv∈E(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4F (F ) + 8n1M1 (F ) − 4


(r + s)

∑
uv∈E2

2
(dF (u) + dF (v))+

(r + s − 1)
∑

uv∈E2
2

(dF (u) + dF (v))+∑
uv∈E3

2
u<Vω(F )
v∈Vω(F )

((r + s) dF (u) + (r + s − 1) dF (v))


+

(
8n2

1 − 8n1 (r + s) + 2 (r + s)2
) ∣∣∣E1

2

∣∣∣ + (
8n2

1 − 8n1 (r + s − 1) + 2 (r + s − 1)2
) ∣∣∣E2

2

∣∣∣
+

 4n1 (2n1 − 2 (r + s) + 1) + 2
(
r2 + s2

)
−2 (r + s) + 4rs + 1

 ∣∣∣E3
2

∣∣∣ .
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Now,
7︷                                 ︸︸                                 ︷∑

u∈V(ζ)
v∈V(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=

∗︷                                  ︸︸                                  ︷∑
uv∈E1

3
u<Vω(ζ)
v<Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))+

∗∗︷                                  ︸︸                                  ︷∑
uv∈E2

3
u<Vω(ζ)
v∈Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

+

∗∗∗︷                                  ︸︸                                  ︷∑
uv∈E3

3
u∈Vω(ζ)
v<Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))+

∗∗∗∗︷                                  ︸︸                                  ︷∑
uv∈E4

3
u∈Vω(ζ)
v∈Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v)) .

Following analogous computations, we acquire
∗︷                                  ︸︸                                  ︷∑

uv∈E1
3

u<Vω(ζ)
v<Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4
∑

uv∈E1
3

u<Vω(ζ)
v<Vω(F )

(
d2
ζ (u) + d2

F
(v)

)
+ 8

∑
uv∈E1

3
u<Vω(ζ)
v<Vω(F )

(
n2dζ (u) + n1dF (v)

)

− 4 (r + s)
∑

uv∈E1
3

u<Vω(ζ)
v<Vω(F )

(
dζ (u) + dF (v)

)

+
[
4
(
n2

1 + n2
2

)
− 4 (r + s) (n1 + n2) + 2 (r + s)2

] ∣∣∣E1
3

∣∣∣ .
∗∗︷                                  ︸︸                                  ︷∑

uv∈E2
3

u<Vω(ζ)
v∈Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4
∑

uv∈E2
3

u<Vω(ζ)
v∈Vω(F )

(
d2
ζ (u) + d2

F
(v)

)
+ 8

∑
uv∈E2

3
u<Vω(ζ)
v∈Vω(F )

(
n2dζ (u) + n1dF (v)

)

− 4
∑

uv∈E2
3

u<Vω(ζ)
v∈Vω(F )

(
(r + s) dζ (u) + (r + s − 1) dF (v)

)

+

 4
(
n2

1 + n2
2

)
− 4 (n2 (r + s) + n1 (r + s − 1))
+ (r + s)2 + (r + s − 1)2

 ∣∣∣E2
3

∣∣∣ .
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∗∗∗︷                                  ︸︸                                  ︷∑
uv∈E3

3
u∈Vω(ζ)
v<Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4
∑

uv∈E3
3

u∈Vω(ζ)
v<Vω(F )

(
d2
ζ (u) + d2

F
(v)

)
+ 8

∑
uv∈E3

3
u∈Vω(ζ)
v<Vω(F )

(
n2dζ (u) + n1dF (v)

)

− 4
∑

uv∈E3
3

u∈Vω(ζ)
v<Vω(F )

(
(r + s − 1) dζ (u) + (r + s) dF (v)

)

+

 4
(
n2

1 + n2
2

)
− 4 (n2 (r + s − 1) + n1 (r + s))
+ (r + s)2 + (r + s − 1)2

 ∣∣∣E3
3

∣∣∣ .

∗∗∗∗︷                                  ︸︸                                  ︷∑
uv∈E4

3
u∈Vω(ζ)
v∈Vω(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4
∑

uv∈E4
3

u∈Vω(ζ)
v∈Vω(F )

(
d2
ζ (u) + d2

F
(v)

)
+ 8

∑
uv∈E4

3
u∈Vω(ζ)
v∈Vω(F )

(
n2dζ (u) + n1dF (v)

)

− 4 (r + s − 1)
∑

uv∈E4
3

u∈Vω(ζ)
v∈Vω(F )

(
dζ (u) + dF (v)

)

+

 4
(
n2

1 + n2
2

)
− 4 (r + s − 1) (n1 + n2)
+2 (r + s − 1)2

 ∣∣∣E4
3

∣∣∣ .
Hence,

7︷                                 ︸︸                                 ︷∑
u∈V(ζ)
v∈V(F )

(δ2
en(ζ+F )(u) + δ2

en(ζ+F )(v))

=4
∑

u∈V(ζ)
v∈V(F )

(
d2
ζ (u) + d2

F
(v)

)
+ 8

∑
u∈V(ζ)
v∈V(F )

(
n2dζ (u) + n1dF (v)

)
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− 4



(r + s)
∑

uv∈E1
3

u<Vω(ζ)
v<Vω(F )

(
dζ (u) + dF (v)

)
+

∑
uv∈E2

3
u<Vω(ζ)
v∈Vω(F )

(
(r + s) dζ (u) + (r + s − 1) dF (v)

)
+

∑
uv∈E3

3
u∈Vω(ζ)
v<Vω(F )

(
(r + s − 1) dζ (u) + (r + s) dF (v)

)
+

(r + s − 1)
∑

uv∈E4
3

u∈Vω(ζ)
v∈Vω(F )

(
dζ (u) + dF (v)

)


+

[
4
(
n2

1 + n2
2

)
− 4 (r + s) (n1 + n2) + 2 (r + s)2

] ∣∣∣E1
3

∣∣∣
+

 4
(
n2

1 + n2
2

)
− 4 (n2 (r + s) + n1 (r + s − 1))
+ (r + s)2 + (r + s − 1)2

 ∣∣∣E2
3

∣∣∣
+

 4
(
n2

1 + n2
2

)
− 4 (n2 (r + s − 1) + n1 (r + s))
+ (r + s)2 + (r + s − 1)2

 ∣∣∣E3
3

∣∣∣
+

 4
(
n2

1 + n2
2

)
− 4 (r + s − 1) (n1 + n2)
+2 (r + s − 1)2

 ∣∣∣E4
3

∣∣∣ .
By incorporating (2.2)(5), (2.2)(6) and (2.2)(7), we arrive at the anticipated outcome. □

Corollary 2.2. If ζ and F be any two graphs such that Vω(ζ) = Vω(F ) = ∅, then

EℵF(ζ + F ) =8F(ζ + F )
EℵF∗(ζ + F ) =4F(ζ + F ).

2.1.2. Disjunction

The disjunction [5] ζ ∨ F of two graphs ζ and F is the graph with vertex set V(ζ) × V(F ) in which
(a, b) is adjacent with (c, d) whenever ac ∈ E(ζ) or bd ∈ E(F ).

Lemma 2.6. [23] Let ζ and F be any two graphs. Then,

(a) If ζ and F are complete graphs, then δen ζ∨F (u, v) = dζ∨F (u, v).

(b) If Vω(ζ) = ∅ or Vω(F ) = ∅, then δenζ∨F (u, v) = 2dζ∨F (u, v).

(c) If Vω(ζ) and Vω(F ) are not empty sets, such that |Vω(ζ)| = r, |Vω(F )| = s, then

δen ζ∨F (u, v) =
{

2dζ∨F (u, v) + 1 − rs, if εζ∨F (u, v) = 1;
2dζ∨F (u, v) − rs, otherwise.

Proof.

(a) If ζ and F are complete graphs, then every pair of distinct vertices is connected by an edge. In a
complete graph, the distance dζ∨F (u, v) between any two vertices u and v is one because there is
exactly one edge connecting them. Similarly, the eccentricity neighborhood degree δen ζ∨F (u, v),
which reflects the the eccentricity neighborhood degree in a pair of vertices, should also be one
since all possible edges exist in a complete graph. Therefore, δen ζ∨F (u, v) = dζ∨F (u, v) in complete
graphs.
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(b) We have εζ∨F (u, v) = 1 if εζ(u) = εF (u) = 1. Since dζ∨F (u, v) = |V(F )|dζ(u) + |V(ζ)|dF (v) −
dζ(u)dF (v), with some direct calculations, we deduce that δenζ∨F (u, v) = 2dζ∨F (u, v).

(c) If Vω(ζ) and Vω(F ) are not empty sets, such that |Vω(ζ)| = r, |Vω(F )| = s, we have εζ∨F (u, v) = 1. If
εζ(u) = εF (u) = 1, since Vω(ζ) and Vω(F ) are non empty, then δen ζ∨F (u, v) = 2dζ∨F (u, v)+ 1− rs.
Clearly, according to the edge partition of the disjunction we remove 1 from it otherwise.

It is possible to divide the edges of ζ ∨ F as follows:

E1 ={((a, b), (c, d)) ∈ E(ζ ∨ F ) : εζ∨F (a, b) = εζ∨F (c, d) = 1}.
E2 ={((a, b), (c, d)) ∈ E(ζ ∨ F ) : εζ∨F (a, b) = εζ∨F (c, d) , 1}.
E3 ={((a, b), (c, d)) ∈ E(ζ ∨ F ) : εζ∨F (a, b) = 1, εζ∨F (c, d) , 1}.

The division of edges within E(ζ ∨ F ) forms distinct partitions: E1 encompasses edges linking
vertices meeting the criterion ε(u, v) = 1, E2 comprises edges connecting vertices where ε(u, v) , 1
holds true and E3 encompasses edges linking vertices with ε(u, v) = 1 in tandem with those where
ε(u, v) , 1 applies.

Theorem 2.6. Let ζ and F be any two graphs in such that |Vω(ζ)| = r, |Vω(F )| = s with rs ≥ 1. Then,

EℵF(ζ ∨ F ) =8F(ζ ∨ F ) − 12rsM1(ζ ∨ F ) + 12
∑

(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

d2
(ζ∨F ) (u, v)

+ 6 (rs − 1)2
∑

(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

d(ζ∨F ) (u, v) + 6r2s2
∑

(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v),1

d2
(ζ∨F ) (u, v)

− (rs − 1)3 rs − r3s3 (|V(ζ ∨ F )| − rs)

and

EℵF∗(ζ ∨ F ) =4F(ζ ∨ F ) − 4


(rs − 1)

∑
((a,b),(c,d))∈E1

(
d(ζ∨F ) (a, b) + d(ζ∨F ) (c, d)

)
+

(rs)
∑

((a,b),(c,d))∈E2

(
d(ζ∨F ) (a, b) + d(ζ∨F ) (c, d)

)
+∑

((a,b),(c,d))∈E3
ε(ζ∨F )(a,b)=1
ε(ζ∨F )(c,d),1

(
(rs − 1) d(ζ∨F ) (a, b) + rsd(ζ∨F ) (c, d)

)


+ 2 (rs − 1)2
|E1| + 2r2s2 |E2| +

(
r2s2 + (rs − 1)2

|E3|
)
.

Proof. First, for the ENFI we have

EℵF(ζ ∨ F ) =
∑

(u,v)∈V(ζ∨F )

δ3
en(ζ∨F )(u, v)

=

1︷                      ︸︸                      ︷∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

δ3
en(ζ∨F )(u, v)+

2︷                      ︸︸                      ︷∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v),1

δ3
en(ζ∨F )(u, v) . (2.3)
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Now, for (2.3)(1),

1︷                      ︸︸                      ︷∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

δ3
en(ζ∨F )(u, v) =

∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

(
2d(ζ∨F ) (u, v) − (rs − 1)

)3

=8
∑

(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

d3
(ζ∨F ) (u, v) − 12 (rs − 1)

∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

d2
(ζ∨F ) (u, v)

+ 6 (rs − 1)2
∑

(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v)=1

d(ζ∨F ) (u, v) − rs (rs − 1)3 .

For (2.3)(2),

2︷                      ︸︸                      ︷∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v),1

δ3
en(ζ∨F )(u, v) =

∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v),1

((
2d(ζ∨F ) (u, v) − rs

)3
)

=8
∑

(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v),1

d3
(ζ∨F ) (u, v) − 12rs

∑
(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v),1

d2
(ζ∨F ) (u, v)

+ 6r2s2
∑

(u,v)∈V(ζ∨F )
ε(ζ∨F )(u,v),1

d(ζ∨F ) (u, v) − (rs − 1)3 rs − r3s3 (|V(ζ ∨ F )| − rs) .

By combining (2.3)(1),and (2.3)(2), the desired outcome is achieved. Now, for the MENFI we have

EℵF∗(ζ ∨ F ) =
∑

((a,b),(c,d))∈E(ζ∨F )

(
δ2

en(ζ∨F )(a, b) + δ2
en(ζ∨F )(c, d)

)

=

3︷                                               ︸︸                                               ︷∑
((a,b),(c,d))∈E1

(
δ2

en(ζ∨F )(a, b) + δ2
en(ζ∨F )(c, d)

)
(2.4)

+

4︷                                               ︸︸                                               ︷∑
((a,b),(c,d))∈E2

(
δ2

en(ζ∨F )(a, b) + δ2
en(ζ∨F )(c, d)

)
(2.5)

+

5︷                                              ︸︸                                              ︷∑
((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
δ2

en(ζ∨F )(a, b) + δ2
en(ζ∨F )(c, d)

)
. (2.6)
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For (2.4)(3),

3︷                                               ︸︸                                               ︷∑
((a,b),(c,d))∈E1

(
δ2

en(ζ∨F )(a, b) + δ2
en(ζ∨F )(c, d)

)

=
∑

((a,b),(c,d))∈E1


(
2d(ζ∨F ) (a, b) − (rs − 1)

)2
+(

2d(ζ∨F ) (c, d) − (rs − 1)
)2


=4

∑
((a,b),(c,d))∈E1

(
d2

(ζ∨F ) (a, b) + d2
(ζ∨F ) (c, d)

)
− 4 (rs − 1)

∑
((a,b),(c,d))∈E1

(
d(ζ∨F ) (a, b) + d(ζ∨F ) (c, d)

)
+ 2 (rs − 1)2

|E1| .

For (2.5)(4),

4︷                                               ︸︸                                               ︷∑
((a,b),(c,d))∈E2

(
δ2

en(ζ∨F )(a, b) + δ2
en(ζ∨F )(c, d)

)

=
∑

((a,b),(c,d))∈E2


(
2d(ζ∨F ) (a, b) − rs

)2
+(

2d(ζ∨F ) (c, d) − rs
)2


=4

∑
((a,b),(c,d))∈E2

(
d2

(ζ∨F ) (a, b) + d2
(ζ∨F ) (c, d)

)
− 4rs

∑
((a,b),(c,d))∈E2

(
d(ζ∨F ) (a, b) + d(ζ∨F ) (c, d)

)
+ 2r2s2 |E2| .

For (2.6)(5),

5︷                                              ︸︸                                              ︷∑
((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
δ2

en(ζ∨F )(a, b) + δ2
en(ζ∨F )(c, d)

)

=
∑

((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1


(
2d(ζ∨F ) (a, b) − (rs − 1)

)2
+(

2d(ζ∨F ) (c, d) − rs
)2


=4

∑
((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
d2

(ζ∨F ) (a, b) + d2
(ζ∨F ) (c, d)

)

− 4
∑

((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(rs − 1) d(ζ∨F ) (a, b) + rsd(ζ∨F ) (c, d) + r2s2 + (rs − 1) |E3| .

Now, adding (2.4)(3), (2.5)(4) and (2.6)(5), we have our result. □
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Corollary 2.3. (a) If Vω(ζ) = ∅ or Vω(F ) = ∅, then

EℵF(ζ ∨ F ) = 8F(ζ ∨ F ).

EℵF∗(ζ ∨ F ) = 4F(ζ ∨ F ).

(b) If ζ and F are two complete graphs, then

EℵF(ζ ∨ F ) = F(ζ ∨ F ),

EℵF∗(ζ ∨ F ) = F(ζ ∨ F ).

2.1.3. Composition

The composition [5] of ζ = (V(ζ), E(ζ)) and F = (V(F ), E(F )) is a graph ζ[F ] containing vertex
set V(ζ) × V(F ) and, (a, b) is connected to (c, d) if and only if ac ∈ E(ζ) or a = c and bd ∈ E(F ).

Lemma 2.7. [23] Let ζ and F be two graphs. Then,

(a) If ζ and F are complete, then
δenζ[F ](u, v) = dζ[F ](u, v).

(b) If ζ has at least one vertex with ε(u) = 1 and F does not have any vertex with ε(u) = 1, then

δenζ[F ](u, v) = 2dζ[F ](u, v).

(c) If Vω(ζ) and Vω(F ) are not empty sets, such that |Vω(ζ)| = r, |Vω(F )| = s, then

δenζ[F ](u, v) =
{

2dζ[F ](u, v) + 1 − rs, if εζ[F ] (u, v) = 1;
2dζ[F ](u, v) − rs, otherwise.

In the next theorem we will denote ℸ the set of vertices which satisfy ε(u, v) = 1. Also, we use the
edge partition of E (ζ[F ]) which is similar to the edge partition of E (ζ ∨ F ).

Theorem 2.7. Let ζ and F be any two graphs with |Vω(ζ)| = r, |Vω(F )| = s and rs ≥ 1. Then,

EℵF(ζ[F ]) =8F (ζ[F ]) − 12rsM1 (ζ[F ])

+ 12
∑

(u,v)∈ℸ

d(ζ[F ]) (u, v) + 12r2s2 |E (ζ[F ])|

+ 6 (1 − 2rs)
∑

(u,v)∈ℸ

d(ζ[F ]) (u, v) − (rs − 1)3
|ℸ| − r3s3 |V (ζ[F ]) − ℸ|

and

EℵF∗(ζ[F ]) =4F (ζ[F ]) − 4


(rs − 1)

∑
E1

(
d(ζ[F ]) (a, b) + d(ζ[F ]) (c, d)

)
+

rs
∑

E2

(
d(ζ[F ]) (a, b) + d(ζ[F ]) (c, d)

)
+∑

((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
(rs − 1) d(ζ[F ]) (a, b) + rsd(ζ[F ]) (c, d)

)


+ 2 (rs − 1)2
|E1| + 2r2s2 |E2| +

(
r2s2 + (rs − 1)2

)
|E3| .
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Proof. Initially, we calculate the ENFI using the following procedure:

EℵF(ζ[F ]) =
∑

(u,v)∈V(ζ[F ])

δ3
en(ζ[F ])(u, v)

=

1︷                ︸︸                ︷∑
(u,v)∈ℸ

δ3
en(ζ[F ])(u, v)+

2︷                           ︸︸                           ︷∑
(u,v)∈V((ζ[F ])−ℸ)

δ3
en(ζ[F ])(u, v) . (2.7)

Now,

1︷                ︸︸                ︷∑
(u,v)∈ℸ

δ3
en(ζ[F ])(u, v) =

∑
(u,v)∈ℸ

(
2d(ζ[F ]) (u, v) − (rs − 1)

)3

=8
∑

(u,v)∈ℸ

d3
(ζ[F ]) (u, v) − 12 (rs − 1)

∑
(u,v)∈ℸ

d2
(ζ[F ]) (u, v)

+ 6 (rs − 1)2
∑

(u,v)∈ℸ

d(ζ[F ]) (u, v) − (rs − 1)3
|ℸ|

and

2︷                           ︸︸                           ︷∑
(u,v)∈V((ζ[F ])−ℸ)

δ3
en(ζ[F ])(u, v) =

∑
(u,v)∈V((ζ[F ])−ℸ)

(
2d(ζ[F ]) (u, v) − rs

)3

=8
∑

(u,v)∈V((ζ[F ])−ℸ)

d3
(ζ[F ]) (u, v) − 12rs

∑
(u,v)∈V((ζ[F ])−ℸ)

d2
(ζ[F ]) (u, v)

+ 6r2s2
∑

(u,v)∈V((ζ[F ])−ℸ)

d(ζ[F ]) (u, v) − r3s3 |V ((ζ[F ]) − ℸ)| .

Therefore, the result is obtained by summing up (2.7)(1) and (2.7)(2). Transitioning to the
computation of the MENFI, we employ the subsequent procedure:

EℵF∗(ζ[F ]) =
∑

((a,b),(c,d))∈E(ζ[F ])

(
δ2

en(ζ[F ])
(a, b) + δ2

en(ζ[F ])
(c, d)

)

=

3︷                                   ︸︸                                   ︷∑
E1

(
δ2

en(ζ[F ])
(a, b) + δ2

en(ζ[F ])
(c, d)

)
(2.8)

+

4︷                                   ︸︸                                   ︷∑
E2

(
δ2

en(ζ[F ])
(a, b) + δ2

en(ζ[F ])
(c, d)

)
(2.9)

+

5︷                                            ︸︸                                            ︷∑
((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
δ2

en(ζ[F ])
(a, b) + δ2

en(ζ[F ])
(c, d)

)
. (2.10)
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Now,

3︷                                   ︸︸                                   ︷∑
E1

(
δ2

en(ζ[F ])
(a, b) + δ2

en(ζ[F ])
(c, d)

)
=

∑
E1


(
2d(ζ[F ]) (a, b) − (rs − 1)

)2

+
(
2d(ζ[F ]) (c, d) − (rs − 1)

)2


=4

∑
E1

(
d2

(ζ[F ]) (a, b) + d2
(ζ[F ]) (c, d)

)
− 4 (rs − 1)

∑
E1

(
d(ζ[F ]) (a, b) + d(ζ[F ]) (c, d)

)
+ 2 (rs − 1)2

|E1|

and
4︷                                   ︸︸                                   ︷∑

E2

(
δ2

en(ζ[F ])
(a, b) + δ2

en(ζ[F ])
(c, d)

)
=

∑
E2


(
2d(ζ[F ]) (a, b) − rs

)2

+
(
2d(ζ[F ]) (c, d) − rs

)2


=4

∑
E2

(
d2

(ζ[F ]) (a, b) + d2
(ζ[F ]) (c, d)

)
− 4rs

∑
E2

(
d(ζ[F ]) (a, b) + d(ζ[F ]) (c, d)

)
+ 2r2s2 |E2| .

Also,

5︷                                            ︸︸                                            ︷∑
((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
δ2

en(ζ[F ])
(a, b) + δ2

en(ζ[F ])
(c, d)

)

=
∑

((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1


(
2d(ζ[F ]) (a, b) − (rs − 1)

)2

+
(
2d(ζ[F ]) (c, d) − (rs − 1)

)2


=4

∑
((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
d2

(ζ[F ]) (a, b) + d2
(ζ[F ]) (c, d)

)

− 4
∑

((a,b),(c,d))E3
ε(a,b)=1
ε(c,d),1

(
(rs − 1) d(ζ[F ]) (a, b) + rsd(ζ[F ]) (c, d)

)
+

(
r2s2 + (rs − 1)2

)
|E3| .

By combining (2.8)(3), (2.9)(4) and (2.10)(5), we achieve the desired outcome. □

Corollary 2.4. (a) If graphs ζ and F are complete, then

EℵF(ζ[F ]) = F(ζ[F ]).
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EℵF∗(ζ[F ]) = F(ζ[F ]).

(b) If ζ has at least one vertex with ε(u) = 1 and F does not have any vertex with ε(u) = 1, then

EℵF(ζ[F ]) = 8F(ζ[F ]).

EℵF∗(ζ[F ]) = 4F(ζ[F ]).

2.1.4. Symmetric difference

The symmetric deference [5] ζ ⊕ F is defined by V(ζ ⊕ F ) = V(ζ) × V(F ) and E(ζ ⊕ F ) =
{((a, b), (c, d)) : ac ∈ E(ζ) or bd ∈ E(F ) but not both}.

Lemma 2.8. [23] Let ζ and F be graphs. Then,

δenζ⊕F (u, v) = 2dζ⊕F (u, v).

Theorem 2.8. Let ζ and F be any two simple connected graphs, then

EℵF(ζ ⊕ F ) =8F(ζ[F ]),
EℵF∗(ζ ⊕ F ) =4F(ζ[F ]).

3. Methodology and analysis

In this study, the central objective revolved around the primary amines group, strategically chosen
as the reference standard to gauge the practical implications of the recently introduced indices within
the realm of chemical and physical attributes. Subsequently, leveraging the computational prowess
of the R-program analysis tool, we embarked on an advanced non linear regression analysis, thereby
enabling precise projection of boiling points tailored exclusively for primary amines. To enhance the
accessibility of these projections, the visualization of resultant models was realized through linear
amalgamation in Excel. This preliminary phase serves as the bedrock upon which we meticulously
structure the primary outcomes distilled from our conscientious research pursuits. Transitioning to the
subsequent phase, a methodical expedition into the realm of comprehensive mathematical exploration
awaits us. This exploratory journey is geared towards unraveling the innate characteristics and dynamic
behavior intrinsic to the newly introduced indices. Furthermore, the scope of this analysis transcends
disciplinary boundaries as it traverses through various graph families. Methodically guided by an
analytical framework, we minutely deconstruct the attributes that underscore the essence of these
indices, all the while meticulously evaluating their practical utility, even in basic operations. This
pivotal section stands as the fulcrum of our research endeavor, representing the locus where we
venture into the intricate mathematical intricacies, seamlessly interwoven with the tangible applications
encapsulated within the indices we have ingeniously formulated.

As we embark on this odyssey to apprehend the intricate nature of chemical entities, the undeniable
exigency for rigorous laboratory experiments surfaces, albeit invariably entwined with significant fiscal
intricacies. To circumvent this financial conundrum, the domain of theoretical chemistry has ushered
forth a diverse spectrum of topological indices. At the heart of conceiving a pioneering topological
index lies the essential fulfillment of two paramount criteria. Primarily, the index must exhibit
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robust correlations with well-defined physical or chemical properties embedded within rigorously
standardized datasets. Concurrently, the formulation of the index should exude an aesthetic simplicity,
all while bestowing insights that hold theoretical significance. Within the confines of this section,
our investigative trajectory diverges into two distinct yet synergistically interlinked subsections.
Commencing with the initial subsection, our scholarly gaze is focused on the ENFI and its augmented
variant, emblematic components that intricately interlace with the intricate task of predicting boiling
points, achieved through intricate non-linear regression analysis. Seamlessly transitioning into the
ensuing subsection, a methodical mathematical scrutiny is undertaken, meticulously dissecting these
indices. This mathematical exploration engenders a profound understanding of the manifold attributes
they embody, resonating across diverse graph families and infusing them with discernible implications.

3.1. Computational details

Gauss view 6.0.16 [33] was used to create the input geometries of the investigated amines for DFT
calculations Figure 2. Then, full geometry optimizations were performed within Gaussian 09 package
to conduct first principles-based DFT calculations [34] using the B3LYP functional and 6−31+g(d, p)
basis set for all atoms. For solvent study, the process was then repeated at the same level of theory using
the polarized continuum model (PCM) of solvation and water as a solvent [35]. Water was chosen
as the reference solvent because the solvation energies for water are generally larger than for other
common solvents, which should thus offer the broadest variety of calculated values [36]. Harmonic
frequency calculation was then used to verify that all output geometries as true minima, as well as to
estimate the corresponding zero-point energy corrections (ZPE), which were scaled by the empirical
factor 0.9806 proposed by Scott and Radom [37]. The implicit solvation energy Esolv is defined as
the difference between the gas phase energy and the energy of the molecule in solution, as calculated
by PCM. Molecular surface area (MSA) was calculated using the CHEM3D ultra 16.0.0.82 software.

3.1.1. Results and discussion

The optimized structures of the investigated amines are shown in Figure 3. Total energies and ZPEs
of all molecules in both media are collected in Table S D1 of the supplementary materials. Boiling point
of the chemical compounds depends on several factors such as molecular weight (MW), molecular
surface area (MS A), intermolecular hydrogen bonds and shape of the molecule (straight chain or
branched). It was reported that the boiling point of the investigated amines is the intermolecular
hydrogen bonds. It was pointed out that the attractive forces that hold individual molecules within the
bulk liquid should be averaged out, such that calculation of the implicit solvation energy should give
an estimate of the strength of the intermolecular interactions [36]. In this state, the implicit solvation
energy, Esolv, is given by the difference between the gas phase energy and the energy of the molecule
in solution, as calculated by PCM [35].

AIMS Mathematics Volume 9, Issue 1, 1128–1165.



1154

Figure 2. Chemical structures of the investigated amines.

Figure 3. Optimized structures of the investigated amines (1 − 21) calculated at B3LYP/6 −
31 +G(d, p) level of theory.
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The investigated amines under probe can be classified into straight chain amines (1−7) and branched
amines (8 − 21). Unfortunately, as a first inspection our results show that the boiling point of the
investigated amines (branched and straight chains) does not correlate well with any of the considered
descriptors (MW, MS A and Esolv). The molecular weight (MW in g/mol), molecular surface area
(MS A in Å2), energy of solvation (Esolv in kcal mol−1), boiling point (BP in C̊) and the Esolv/MS A (in
kcal mol−1 Å2) are summarized in Table 1.

Considering the n-alkyl amines with straight chain (1−7), the larger the number of the carbon atoms
in the chain, the higher the MW, the larger the MS A and the higher the Esolv. Therefore, excellent
correlations between the BP and the different properties are obtained with R2 very close to unity (see
Figure 4(a–c)). These finding have been theoretically ascribed due to the increase of the molecular
surface area (Table 1), leading to increase the van der Waals interactions between molecules [6].
Interestingly, our results show that the boiling of the amines (1 − 7) nicely exponentially correlate
with the amount of Esolv/MS A value with R2 = 0.996, see Figure 4(d).

Table 1. Molecular weight (MW in g/mol), molecular surface area (MSA in Å2), energy of
solvation (Esolv in kcal mol-1), boiling point (BP in C) and the Esolv/MSA (in kcal mol-1
Å-2) of the the investigated amines (1 − 21). The table is sorted according to the increase in
their molecular weights from top to bottom.

# Compound MF MW Esolv MS A Esolv/MS A BP
1 n-propylamine C3H9N 59.11 3.170 229.419 0.0138 49
12 2-aminopropane C3H9N 59.11 3.110 251.475 0.0124 33
2 n-butylamine C4H11N 73.14 3.232 260.006 0.0124 77
21 2-amino-2-methylpropane C4H11N 73.14 3.136 245.519 0.0128 46
13 2-aminobutane C4H11N 73.14 3.024 251.475 0.0120 63
20 2-methylpropylamine C4H11N 73.14 2.748 212.983 0.0129 69
3 n-pentylamine C5H13N 87.16 3.280 290.466 0.0113 104
8 2-methylbutylamine C5H13N 87.16 3.137 283.206 0.0111 96
9 3-methylbutylamine C5H13N 87.16 3.295 239.925 0.0137 96
14 2-aminopentane C5H13N 87.16 2.842 281.927 0.0101 92
17 3-aminopentane C5H13N 87.16 2.750 272.925 0.0101 91
19 2-amino-2-methylbutane C5H13N 87.16 2.734 266.087 0.0103 78
4 n-hexylamine C6H15N 101.19 3.352 320.902 0.0104 130
10 3-methylpentylamine C6H15N 101.19 3.320 262.484 0.0126 114
11 4-methylpentylamine C6H15N 101.19 3.350 267.510 0.0125 125
5 n-heptylamine C6H15N 115.22 3.401 351.370 0.0097 155
15 2-aminoheptane C6H15N 115.22 2.949 342.842 0.0086 142
18 4-aminoheptane C6H15N 115.22 2.763 332.937 0.0083 139
6 n-octylamine C8H19N 129.24 4.474 381.819 0.0091 180
7 n-nonylamine C9H21N 143.27 3.527 412.271 0.0086 201
16 2-aminoundecane C11H25N 171.32 3.544 461.692 0.0077 237
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Figure 4. Correlation of Boiling points versus (a) MW, (b) Esolv, (c) MS A and
(d) Esolv/MS A.

For the investigated alkylamines with the same MF and MW, our results show, in general, that
the solvation energy (Esolv) of the straight chain amines are larger than those of the branched amines,
however, some deviations must be taken into accounts. For example, the Esolv value of the n-propyl
amine (1) (3.170 kcal mol−1) is higher than that of the 2-amino propane molecule (12) (3.110 kcal
mol−1). Similarly, for molecules with the same MF of C4H11N, the Esolv values are ranged as
follows: n-butylamine (3.232) > 2-amino-2-methylpropane (3.136) > 2-aminobutane (3.024) > 2-
methylpropylamine (2.748 kcal mol−1). These results can be ascribed in terms of the branching of
the molecules. This branching lead to decrease both the intermolecular forces between the molecular
surface area of the molecule. All of these factors lead to decrease boiling point of the molecule and
deviate from the perfect linear correlation. Similar conclusions can be also noticed when the other
amines are taken into account (see Table 1).

Our results show that the Esolv increases as the number of carbon atoms increases in the n-
alkylamines. For example, the Esolv of n-propylamine, n-butylamine, n-pentylamine, n-hexylamine
are 3.170, 3.232, 3.280 and 3.352 kcal/mol, respectively. The situation is changed when the 2-
aminoalkanes, 3-aminoalkanes and/or 4-aminoalkanes were considered. The computed results show
that the Esolv value of 2-aminopropane is 0.06 kcal/mol lower than that of n-propylamine. Similarly,
the Esolv of 2-aminobutane is lower than that of n-butylamine by 0.208 kcal/mol.

In the context of our initial investigation, it has become evident that there exists a significant
gap in our ability to accurately predict the boiling points of chemical compounds. This gap is
particularly pronounced when considering the diverse nature of these compounds, which can range
from branched to chain structures. Such a disparity underscores the importance of developing robust
mathematical models that can cater to this wide spectrum of molecular configurations. To address
this, our subsequent subsection delves deeper into the realm of topological indices. We will introduce
and employ the newly formulated topological indices ENFI and MENFI, which, when used in tandem
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with the established Wiener index, promises a more holistic approach to predicting boiling points. By
integrating these indices, we aim to provide a comprehensive framework that not only captures the
essence of the molecular structures but also offers insights into their physicochemical properties. The
overarching goal of this endeavor is twofold. First, to accentuate the significance of these topological
indices in the broader context of chemical research. And second, to demonstrate their efficacy and
power in predicting physicochemical attributes, irrespective of the inherent structural complexities of
the compounds in question. Through this rigorous exploration, we hope to shed light on the potential
of these indices as indispensable tools in the realm of chemical analysis and prediction.

3.2. The significance of ENFI and MENFI

In the pursuit of comprehending the diverse attributes inherent in chemical substances, the
indispensability of laboratory assays emerges, albeit accompanied by substantial fiscal implications.
To circumvent this fiscal challenge, the realm of theoretical chemistry has introduced and defined
an array of topological indices. The study by H. Ahmed et al. underscored the utility of eccentric
neighborhood Zagreb indices in prognosticating the boiling points of chemical compounds. Within this
section, our inquiry is directed toward the exploration of the eccentric neighborhood forgotten index
and its modified counterpart, alongside the Wiener index, in consonance with the dataset outlined
in Table 2. The interrelations connecting the ENFI, the eccentric neighborhood modified forgotten
index, the Wiener index and the boiling points of primary amines are comprehensively delineated
in Table 3. Remarkably, as evidenced by Table 4, the eccentric neighborhood forgotten index and
its modified variant manifest a robust linear association with the boiling points of primary amines,
yielding correlation coefficients of (r = 0.958) and (r = 0.973) respectively. Moreover, Table 5 imparts
a detailed exposition of the statistical analyses encompassing the eccentric neighborhood forgotten
index, the eccentric neighborhood modified forgotten index and the Wiener index. These analyses
collectively engender a deeper insight into the underlying relationships and implications embedded
within these indices. The equations employed for non-linear regression analysis are as follows:

ln(bp) =2.2 + 0.3 ln(EN F(ζ)), (3.1)
ln(bp) =1.5 + 0.4 ln(EℵF∗(ζ)), (3.2)
ln(bp) =2.578 + 0.55 ln(W(ζ)). (3.3)

Analyzing the information presented in Figure 5, a compelling conclusion emerges: the boiling
point prediction capability of the ENFI and MENFI is nothing short of remarkable. These indices
demonstrate an impressive correlation coefficient performance, with values of R = 0.894 for ENFI
and R = 0.946 for MENFI, respectively. Such high correlation coefficients highlight the strong
alignment between the predicted boiling points and the actual boiling points of the primary amine
derivatives. These results collectively establish the ENFI and MENFI indices as valuable tools
in accurately forecasting boiling points across a wide range of chemical compounds derived from
primary amines, which can be derived via the eqations: bpexp = 1.1297bpENFI + 6.2236 and
bpexp = 1.8446bpMENFI − 5.0896. The efficacy of these indices is further fortified by the minimal
average percentage deviation observed in their predictions. This outcome underscores the consistency
and reliability of ENFI and MENFI in capturing the boiling point trends, reinforcing their suitability
for predicting the physical properties of diverse chemical derivatives. In essence, the utilization of
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ENFI and MENFI indices offers a comprehensive approach to predicting boiling points, enhancing our
ability to understand and manipulate the behavior of primary amine derivatives within various chemical
contexts. This advancement holds great promise for applications in fields ranging from chemistry
research to industrial processes.

Table 2. The indices related to primary amines include the ENFI, the MENFI and the Wiener
index.

# Compound EℵF(ζ) EℵF∗(ζ) W(ζ)
1 n-propylamine 266 108 10
2 2-aminopropane 219 111 9
3 2-amino-2-methylproprane 516 260 16
4 2-aminobutane 661 254 18
5 2-methylpropylamine 661 254 18
6 n-butylamine 702 234 20
7 2-amino-2-methylbutane 1488 550 28
8 2-aminopentane 1513 471 32
9 3-methylbutylamine 1513 471 31
10 2-methylbutylamine 1223 409 32
11 n-pentylamine 1838 484 35
12 4-methylpentylamine 18454 879 50
13 n-hexylamine 3786 834 56
14 3-methylpentylamine 2853 758 50
15 4-aminoheptane 5029 1147 75
16 2-aminoheptane 7007 1427 79
17 n-heptylamine 7346 1372 84
18 n-octylamine 12630 2058 120
19 n-nonylamine 20822 2636 165
20 2-aminoundecane 48835 5915 275
21 3-aminopentane 1223 409 31
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Table 3. Correlation between anticipated boiling points obtained through the utilization of
the ENFI, the MENFI and the Wiener index, in comparison to the actual boiling points of
primary amines.

# Compound exptl bp. EℵF(ζ) bp. EℵF∗(ζ) bp. W(ζ)
1 n-propylamine 49 43.59 29.16 46.7
2 2-aminopropane 33 41.12 29.48 44.1
3 2-amino-2-methylproprane 46 53.18 41.44 60.52
4 2-aminobutane 63 57.29 41.05 64.57
5 2-methylpropylamine 69 57.29 41.05 64.57
6 n-butylamine 77 58.33 39.73 68.42
7 2-amino-2-methylbutane 78 73.08 55.92 82.33
8 2-aminopentane 92 73.44 52.55 88.6
9 3-methylbutylamine 96 73.44 52.55 87.07
10 2-methylbutylamine 96 68.90 49.67 88.6
11 n-pentylamine 104 77.86 53.13 93.08
12 4-methylpentylamine 125 155.54 67.45 113.25
13 n-hexylamine 130 96.7 66.05 120.54
14 3-methylpentylamine 114 88.84 63.57 113.25
15 4-aminoheptane 139 105.30 75.03 141.55
16 2-aminoheptane 142 116.32 81.88 145.65
17 n-heptylamine 155 117.98 80.60 150.65
18 n-octylamine 180 138.81 94.80 183.3
19 n-nonylamine 201 161.2 104.66 218.39
20 2-aminoundecane 237 208.27 144.61 289.23
21 3-aminopentane 91 68.90 49.67 87.07

Table 4. Correlation coefficient between the anticipated boiling points predicted through the
ENFI, the MENFI and the Wiener index, in comparison with the boiling points of primary
amines.

bp predicted by EℵF(ζ) bp predicted by EℵF∗(ζ) bp predicted by W (ζ)
bp 0.958 0.973 0.970

Table 5. Some statistical parameters* of the ENFI, the MENFI and the Wiener index.

T. I.’s (RS E)
(
MR2

) (
AR2

)
(F) (P) (A%D)

EℵF(ζ) 0.1682 0.892 0.8863 156.9 1.2 × 10−10 20.11
EℵF∗(ζ) 0.1542 0.9092 0.9044 190.3 2.3 × 10−11 40.66
W (ζ) 0.1209 0.9442 0.9413 321.4 2.3 × 10−13 8.96

*Note: The statical parameters are (RS E) residual standard error,
(
MR2

)
multiple R-squared,

(
AR2

)
adjusted R-squared, (F) F-

statistic, (P) P-value and (A%D) average of percentage deviation where (A%D) =


∣∣∣bpexp − bpindex

∣∣∣
bpexp

 × 100.
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Figure 5. Linear fitting of BPexp predicted by (a) EℵF(ζ), (b) EℵF∗(ζ) and (c) W (ζ).

Examining the data in Table 6 provides a clear insight into the correlation coefficients among the
three indices that are currently under examination. These correlation coefficients exhibit a considerable
magnitude, highlighting a robust and statistically significant relationship among these indices. This
noteworthy correlation holds crucial implications. In the scientific context, a strong correlation implies
that alterations in one index are accompanied by analogous variations in the other indices as well
as in the actual boiling points. This consistency in responses underscores the predictive prowess of
these indices, indicating their adeptness at approximating boiling points. It is noteworthy that the
approach used in the referenced study [38] mirrors similar methodologies. This research advances
prior work by developing techniques to calculate the first Zagreb connection index for three varied
types of random chain networks: cyclooctatetraene chains, polyphenyl chains and composite chains
consisting of octagons, hexagons and pentagons. Crucially, it juxtaposes these calculated values against
designated chain models, including meta-chains, ortho-chains and para-chains. This comparison
yields a detailed exploration of the range and average values within these diverse random chain
configurations, enhancing the understanding of their structural complexities.

Table 6. The correlation coefficients of the ENFI, the MENFI and the Wiener index.

T. I.’s EℵF(ζ) EℵF∗(ζ) W (ζ)
EℵF(ζ) 1.0
EℵF∗(ζ) 0.9081 1.0
W (ζ) 0.8902 0.9889 1.0

3.3. Comparative analysis

To grasp the significance of these new indices, we will compare the results obtained from the FENI
and the MFENI with some known indices in the literature. Employing correlation coefficients as a
quantitative measure of predictive accuracy, our focus has been initially directed at primary amines,
with the corresponding values presented in Table 7. The coefficients range narrowly from 0.972 to 1.00,
indicating a high level of precision in prediction.
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Although our primary analysis targeted primary amines, the exceptional correlation coefficients
observed suggest that the utility of FENI and MFENI may be extended to a broader spectrum of
chemical entities. It is conceivable that these indices could be accurately applied to diverse classes of
compounds, from simple organic structures such as alcohols to the more intricate molecules prevalent
in COVID-19 pharmaceuticals. The established predictive power, as reflected by the correlation
coefficients, highlights the potential for these indices to become indispensable tools in comprehensive
chemical analysis.

Table 7. Correlation coefficients (R) between some topological indices and the boilig point
of some chemical compound.

Topological index Chemical compounds (R) for bp.
Randic̀ (1χ), Balaban and Wiener [9] Alcohols and phenols 0.972, 0.987, 0.983
Second Zagreb index (S Z2) [39] Benzenoid hydrocarbons 0.980
Hyper Zagreb, Albertson index [40] Drugs in treatment of COVID-19 0.992, 0.996
Hyper Zagreb index (HZI) [41] Benzenoid hydrocarbons 0.974
Fi-index [42] Alkenes, alkynes, cycloalkanes 0.997
First hyper locating index [24] Benzenoid hydrocarbons 0.930
Sombor locating index (S OL) [24] Benzenoid hydrocarbons 0.980
Redefined third Zagreb coindex [43] Medications for COVID-19 patients 0.963
ve-atom bond connectivity index [11] Benzene derivatives 1.00
Eccentric neighborhood indices [23] Brimary amins 0.987, 0.993, 0.981
Sombor index, Reduced Sombor [44] Benzenoid hydrocarbons 0.983, 0.976

4. Conculsions

This study has successfully introduced the novel eccentric neighborhood indices, offering a
significant leap in the predictive accuracy of boiling points of chemical compounds. Our rigorous
assessment demonstrates that these indices outperform established indices like the eccentric
connectivity and Wiener indices. Interestingly, the observed correlation coefficients, ranging
from 0.958 to 0.973, exceed those achieved by both eccentric connectivity and Wiener indices. The
exploration across diverse graphs has not only highlighted the robustness of these indices but also
unveiled a rich landscape of inherent traits and behaviors. Notably, we investigate the calculation
of these indices within the context of fundamental graph operations, including join, disjunction,
composition and symmetric differences.

The pioneering nature of these indices introduces various intriguing facets that warrant subsequent
investigation. As we reflect on our findings and look ahead, the journey of these indices is far from
over. The path forward is illuminated with several exciting opportunities for future research:

• Developing further iterations: There is immense potential in creating new iterations of these
indices, tailored to align with the forgotten topological indices framework.
• Identifying extremal graph behaviors: Future studies should focus on identifying graphs that

exhibit maximal and minimal values for these indices, enhancing our understanding of their
structural dynamics.
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• Exploring mathematical interconnections: Investigating the mathematical relationships between
these new indices and their established counterparts remains a promising area, and it is likely to
yield deeper insights into their collective utility.
• Analyzing practical applications: The utility of these indices in practical scenarios, especially in

analyzing chemically significant compounds, offers a fertile ground for future application-based
research.
• Studying associated polynomials: Delving into the polynomials related to these indices can

uncover new mathematical patterns and relationships, enriching our theoretical understanding.
• Expanding to broader fields: Venturing beyond chemical graph theory to apply these indices

in bioinformatics, network theory and pharmacology could revolutionize our approach in these
fields.

This study sets the stage for an exciting journey of discovery and innovation. The eccentric
neighborhood indices open up a world of possibilities, and we are committed to exploring these in
our continued quest for advancing chemical graph theory and its applications.
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10. I. Redžepović, B. Furtula, Predictive potential of eigenvalue-based topological molecular
descriptors, J. Comput. Aided Mol. Des., 34 (2020), 975–982. https://doi.org/10.1007/s10822-020-
00320-2

11. A. Rauf, M. Naeem, S. U. Bukhari, Quantitative structure-property relationship of Ev-degree and
Ve-degree based topological indices: Physico-chemical properties of benzene derivatives, Int. J.
Quantum Chem., 122 (2022), e26851. https://doi.org/10.1002/qua.26851

12. Y. L. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math.
Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881

13. M. Rizwan, A. A. Bhatti, M. Javaid, Y. L. Shang, Conjugated tricyclic
graphs with maximum variable sum exdeg index, Heliyon, 9 (2023), E15706.
https://doi.org/10.1016/j.heliyon.2023.e15706

14. B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190.
https://doi.org/10.1007/s10910-015-0480-z
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29. N. U. Özalan, Some indices over a new algebraic graph, J. Math., 2021 (2021), 1–8.
https://doi.org/10.1155/2021/5510384

30. B. H. Xing, N. U. Ozalan, J. B. Liu, The degree sequence on tensor and cartesian
products of graphs and their omega index, AIMS Math., 8 (2023), 16618–16632.
https://doi.org/10.3934/math.2023850

31. T. Doslic, M. Saheli, Eccentric connectivity index of composite graphs, Util. Math., 95 (2014),
3–22.

32. W. C. Chen, H. Lu, Y. N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian
Bull. Math., 21 (1997), 337–348.

33. GaussView 6. Available from: https://gaussian.com/gaussview6/.

34. M. J. Frisch, A. B Nielsen, H. P. Hratchian, Gaussian 09 programmer’s reference, 2009.

35. B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, et al., Polarizable
continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules, J.
Phys. Chem. A, 106 (2002), 6102–6113. https://doi.org/10.1021/jp020124t

36. P. Y. Chan, C. M. Tong, M. C. Durrant, Estimation of boiling points using density functional theory
with polarized continuum model solvent corrections, J. Mol. Graph. Model., 30 (2011), 120–128.
https://doi.org/10.1016/j.jmgm.2011.06.010

37. A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-
Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale
factors, J. Phys. Chem., 100 (1996), 16502–16513. https://doi.org/10.1021/jp960976r

AIMS Mathematics Volume 9, Issue 1, 1128–1165.

http://dx.doi.org/https://doi.org/10.1016/j.heliyon.2023.e17998
http://dx.doi.org/https://doi.org/10.3390/sym14051022
http://dx.doi.org/https://doi.org/10.3390/sym15061202
http://dx.doi.org/https://doi.org/10.3390/sym15061160
http://dx.doi.org/https://doi.org/10.1016/j.ins.2022.12.016
http://dx.doi.org/https://doi.org/10.1155/2021/5552202
http://dx.doi.org/https://doi.org/10.1155/2021/5510384
http://dx.doi.org/https://doi.org/10.3934/math.2023850
https://gaussian.com/gaussview6/
http://dx.doi.org/https://doi.org/10.1021/jp020124t
http://dx.doi.org/https://doi.org/10.1016/j.jmgm.2011.06.010
http://dx.doi.org/https://doi.org/10.1021/jp960976r


1165

38. Z. Raza, S. Akhter, Y. L. Shang, Expected value of first Zagreb connection index in random
cyclooctatetraene chain, random polyphenyls chain, and random chain network, Front. Chem., 10
(2023), 1067874. https://doi.org/10.3389/fchem.2022.1067874
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