Citation: Zhenshu Wen, Lijuan Shi. Exact explicit nonlinear wave solutions to a modified cKdV equation[J]. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314
[1] | M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc., London, 1991. |
[2] | Z. Zhao, Y. Xu, Solitary waves for Korteweg-de Vries equation with small delay, J. Math. Anal. Appl., 368 (2010), 43-53. |
[3] | J. Liu, J. Guan, Z. Feng, Hopf bifurcation analysis of KdV-Burgers-Kuramoto chaotic system with distributed delay feedback, Int. J. Bifurcat. Chaos, 29 (2019), 1-13. |
[4] | L. Baudouin, E. Crepeau, J. Valein, Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback, IEEE T. Automat. Contr., 64 (2019), 1403-1414. |
[5] | V. Komornik, C. Pignotti, Well-posedness and exponential decay estimates for a Korteweg-de Vries-Burgers equation with time-delay, Nonlinear Anal. Theor., 191 (2020), 1-13. |
[6] | M. S. Alber, G. G. Luther, C. A. Miller, On soliton-type solutions of equations associated with N-component systems, J. Math. Phys., 41 (2000), 284-316. |
[7] | M. Antonowicz, A. P. Fordy, Coupled KdV equations with multi-Hamiltonian structures, Physica D, 28 (1987), 345-357. |
[8] | M. Antonowicz, A. P. Fordy, A family of completely integrable multi-Hamiltonian systems, Phys. Lett. A, 122 (1987), 95-99. |
[9] | M. S. Alber, G. G. Luther, J. E. Marsden, Energy dependent Schrödinger operators and complex Hamiltonian systems on Riemann surfaces, Nonlinearity, 10 (1997), 1-24. |
[10] | Z. Wen, Q. Wang, Abundant exact explicit solutions to a modified cKdV equation, J. Nonlinear Model. Anal., 1 (2020), 1-12. |
[11] | Z. Wen, Z. Liu, M. Song, New exact solutions for the classical Drinfel'd-Sokolov-Wilson equation, Appl. Math. Comput., 215 (2009), 2349-2358. |
[12] | Z. Wen, Qualitative study of effects of vorticity on traveling wave solutions to the two-component Zakharovcit system, Appl. Anal., (2019), 1250305. |
[13] | J. Li, Z. Qiao, Bifurcations and exact traveling wave solutions of the generalized two-component Camassa-Holm equation, Int. J. Bifurcat. Chaos, 22 (2012), 1-13. |
[14] | Z. Wen, Bifurcation of solitons, peakons, and periodic cusp waves for θ-equation, Nonlinear Dynam., 77 (2014), 247-253. |
[15] | Z. Wen, L. Shi, Dynamics of bounded traveling wave solutions for the modified Novikov equation, Dynam. Syst. Appl., 27 (2018), 581-591. |
[16] | A. Biswas, M. Song, Soliton solution and bifurcation analysis of the Zakharov-Kuznetsov-Benjamin-Bona-Mahoney equation with power law nonlinearity, Commun. Nonlinear Sci., 18 (2013), 1676-1683. |
[17] | Z. Wen, Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation, Nonlinear Dynam., 77 (2014), 849-857. |
[18] | Z. Wen, Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system, Nonlinear Dynam., 82 (2015), 767-781. |
[19] | C. Pan, Y. Yi, Some extensions on the soliton solutions for the Novikov equation with cubic nonlinearity, J. Nonlinear Math. Phys., 22 (2015), 308-320. |
[20] | Z. Wen, Bifurcations and exact traveling wave solutions of a new two-component system, Nonlinear Dynam., 87 (2017), 1917-1922. |
[21] | Z. Wen, Bifurcations and exact traveling wave solutions of the celebrated Green-Naghdi equations, Int. J. Bifurcat. Chaos, 27 (2017), 1-7. |
[22] | T. D. Leta, J. Li, Various exact soliton solutions and bifurcations of a generalized Dullin-Gottwald-Holm equation with a power law nonlinearity, Int. J. Bifurcat. Chaos, 27 (2017), 1-22. |
[23] | L. Shi, Z. Wen, Bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation, Commun. Theor. Phys., 69 (2018), 631-636. |
[24] | Z. Wen, Abundant dynamical behaviors of bounded traveling wave solutions to generalized θ-equation, Comp. Math. Math. Phys., 59 (2019), 926-935. |
[25] | L. Shi, Z. Wen, Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation, Chinese Phys. B, 28 (2019), 1-7. |
[26] | A. R. Seadawy, D. Lu, M. M. Khater, Bifurcations of traveling wave solutions for Dodd-Bullough-Mikhailov equation and coupled Higgs equation and their applications, Chinese J. Phys., 55 (2017), 1310-1318. |
[27] | L. Shi, Z. Wen, Several types of periodic wave solutions and their relations of a Fujimoto-Watanabe equation, J. Appl. Anal. Comput., 9 (2019), 1193-1203. |
[28] | Z. Wen, The generalized bifurcation method for deriving exact solutions of nonlinear space-time fractional partial differential equations, Appl. Math. Comput., 366 (2020), 1-10. |
[29] | P. Byrd, M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, Berlin, 1971. |
[30] | Z. Wen, On existence of kink and antikink wave solutions of singularly perturbed Gardner equation, Math. Method. Appl. Sci., 43 (2020), 4422-4427. |