Citation: Muhammad Adil Khan, Josip Pečarić, Yu-Ming Chu. Refinements of Jensen’s and McShane’s inequalities with applications[J]. AIMS Mathematics, 2020, 5(5): 4931-4945. doi: 10.3934/math.2020315
[1] | M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4 |
[2] | S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066 |
[3] | S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114. |
[4] | X. S. Chen, New convex functions in linear spaces and Jensen's discrete inequality, J. Inequal. Appl., 2013 (2013), 1-8. doi: 10.1186/1029-242X-2013-1 |
[5] | S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775-788. doi: 10.11650/twjm/1500574995 |
[6] | G. M. Eshaghi, M. Rostanian Delavar, M. De La Sen, On φ-convex functions, J. Math. Inequal., 10 (2016), 173-183. |
[7] | K. Krulić, J. Pečarić, K. Smoljak, α(x)-convex functions and their inequalities, Bull. Malays. Math. Sci. Soc., 35 (2012), 695-716. |
[8] | N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193-199. doi: 10.1007/s00010-010-0043-0 |
[9] | X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6 |
[10] | S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171 |
[11] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[12] | S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20. |
[13] | M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4 |
[14] | M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0 |
[15] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[16] | M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-20. |
[17] | M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6 |
[18] | T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2 |
[19] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[20] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0 |
[21] | S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mappings with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229 |
[22] | S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11. |
[23] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18. |
[24] | W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2 |
[25] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[26] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271. |
[27] | S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0 |
[28] | H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6 |
[29] | W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4 |
[30] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. |
[31] | M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w |
[32] | B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2 |
[33] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[34] | S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4 |
[35] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[36] | M. Adil Khan, D. Pečarić, J. Pečarić, Bounds for Csiszár divergence and hybrid Zipf-Mandelbrot entropy, Math. Method. Appl. Sci., 42 (2019), 7411-7424. doi: 10.1002/mma.5858 |
[37] | J. G. Liao, A. Berg, Sharpening Jensen's inequality, Am. Stat., 79 (2019), 278-281. |
[38] | Q. Lin, Jensen inequality for superlinear expectations, Stat. Probab. Lett., 151 (2019), 79-83. doi: 10.1016/j.spl.2019.03.006 |
[39] | B. Jessen, Bemrkninger om konvekse Funktioner og Uligheder imellem Middelvrdier I, Mat. Tidsskr. B, 2 (1931), 17-26. |
[40] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992. |
[41] | E. J. McShane, Jensen's inequality, B. Am. Math. Soc., 43 (1937), 521-527. doi: 10.1090/S0002-9904-1937-06588-8 |
[42] | E. Beck, Über Ungleichungen von der Form f(Mφ(x; α), Mψ(y; α)) ≥ Mχ(f(x, y); α), Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 320-328 (1970), 1-14. |
[43] | M. Adil Khan, D. Pečarić, J. Pečarić, New refinement of the Jensen inequality associated to certain functions with applications, J. Inequal. Appl., 2020 (2020), 1-11. doi: 10.1186/s13660-019-2265-6 |
[44] | V. Čuljak, B. Ivanković, J. Pečarić, On Jensen-Mcshane's inequality, Period. Math. Hungar., 58 (2019), 139-154. |