Research article Special Issues

Mathematical modelling of Her2 (ErbB2) PI3K/AKT signalling pathways during breast carcinogenesis to include PTPD2

  • Received: 07 April 2020 Accepted: 27 May 2020 Published: 04 June 2020
  • MSC : 97M60

  • ErbB2 overexpression plays an important pathogenic role in breast cancer and acts via phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signalling pathways. Mathematical models for the PI3K/AKT signalling pathways have been derived but have not incorporated a newly defined positive regulator of the ErbB2 signalling network, phosphatidic acid-protein-tyrosine phosphatase D2 (PTPD2). We hypothesize that PTPD2 acts on the AKT signalling pathway by binding PA to PTPD2 and participates in AKT phosphorylation through PIP3. Based on this, a new mathematical model of ErbB2/P13K/AKT and PLD2/PTPD2 pathways was derived using 22 ordinary differential equations. The derived simulation results were consistent with the experimental results. This model is used to study the change of ppAKT concentration with time at different initial concentrations of PDPD2, PLD2, PI3K and PTEN in the signal pathway. Taken together, these observations suggest therapeutic approaches for erbb2-positive breast cancer which is resistant to ErbB2 targeted therapy based on inhibitors for PI3K, PTPD2 or PLD2.

    Citation: Bing Ji, Jiawei Bai, Luis A J Mur, Mengjia Zou, Jiwan Han, Rui Gao, Qing Yang. Mathematical modelling of Her2 (ErbB2) PI3K/AKT signalling pathways during breast carcinogenesis to include PTPD2[J]. AIMS Mathematics, 2020, 5(5): 4946-4958. doi: 10.3934/math.2020316

    Related Papers:

    [1] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [2] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [3] Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177
    [4] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [5] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [6] Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538
    [7] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [8] Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002
    [9] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [10] Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087
  • ErbB2 overexpression plays an important pathogenic role in breast cancer and acts via phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signalling pathways. Mathematical models for the PI3K/AKT signalling pathways have been derived but have not incorporated a newly defined positive regulator of the ErbB2 signalling network, phosphatidic acid-protein-tyrosine phosphatase D2 (PTPD2). We hypothesize that PTPD2 acts on the AKT signalling pathway by binding PA to PTPD2 and participates in AKT phosphorylation through PIP3. Based on this, a new mathematical model of ErbB2/P13K/AKT and PLD2/PTPD2 pathways was derived using 22 ordinary differential equations. The derived simulation results were consistent with the experimental results. This model is used to study the change of ppAKT concentration with time at different initial concentrations of PDPD2, PLD2, PI3K and PTEN in the signal pathway. Taken together, these observations suggest therapeutic approaches for erbb2-positive breast cancer which is resistant to ErbB2 targeted therapy based on inhibitors for PI3K, PTPD2 or PLD2.


    For a convex function σ:IRR on I with ν1,ν2I and ν1<ν2, the Hermite-Hadamard inequality is defined by [1]:

    σ(ν1+ν22)1ν2ν1ν2ν1σ(η)dησ(ν1)+σ(ν2)2. (1.1)

    The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4] are focused on extending and generalizing the convexity and Hermite-Hadamard inequality.

    The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [5,6,7].

    Now, we recall the definitions of Riemann-Liouville fractional integrals.

    Definition 1.1 ([5,6,7]). Let σL1[ν1,ν2]. The Riemann-Liouville integrals Jϑν1+σ and Jϑν2σ of order ϑ>0 with ν10 are defined by

    Jϑν1+σ(x)=1Γ(ϑ)xν1(xη)ϑ1σ(η)dη,   ν1<x (1.2)

    and

    Jϑν2σ(x)=1Γ(ϑ)ν2x(ηx)ϑ1σ(η)dη,  x<ν2, (1.3)

    respectively. Here Γ(ϑ) is the well-known Gamma function and J0ν1+σ(x)=J0ν2σ(x)=σ(x).

    With a huge application of fractional integration and Hermite-Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite-Hadamard inequality, including fractional integration rather than ordinary integration; for example see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].

    In this paper, we consider the integral inequality of Hermite-Hadamard-Mercer type that relies on the Hermite-Hadamard and Jensen-Mercer inequalities. For this purpose, we recall the Jensen-Mercer inequality: Let 0<x1x2xn and μ=(μ1,μ2,,μn) nonnegative weights such that ni=1μi=1. Then, the Jensen inequality [22,23] is as follows, for a convex function σ on the interval [ν1,ν2], we have

    σ(ni=1μixi)ni=1μiσ(xi), (1.4)

    where for all xi[ν1,ν2] and μi[0,1], (i=¯1,n).

    Theorem 1.1 ([2,23]). If σ is convex function on [ν1,ν2], then

    σ(ν1+ν2ni=1μixi)σ(ν1)+σ(ν2)ni=1μiσ(xi), (1.5)

    for each xi[ν1,ν2] and μi[0,1], (i=¯1,n) with ni=1μi=1. For some results related with Jensen-Mercer inequality, see [24,25,26].

    In view of above indices, we establish new integral inequalities of Hermite-Hadamard-Mercer type for convex functions via the Riemann-Liouville fractional integrals in the current project. Particularly, we see that our results can cover the previous researches.

    Theorem 2.1. For a convex function σ:[ν1,ν2]RR with x,y[ν1,ν2], we have:

    σ(ν1+ν2x+y2)2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1)+σ(ν2)σ(x)+σ(y)2. (2.1)

    Proof. By using the convexity of σ, we have

    σ(ν1+ν2u+v2)12[σ(ν1+ν2u)+σ(ν1+ν2v)], (2.2)

    and above with u=1η2x+1+η2y, v=1+η2x+1η2y, where x,y[ν1,ν2] and η[0,1], leads to

    σ(ν1+ν2x+y2)12[σ(ν1+ν2(1η2x+1+η2y))+σ(ν1+ν2(1+η2x+1η2y))]. (2.3)

    Multiplying both sides of (2.3) by ηϑ1 and then integrating with respect to η over [0,1], we get

    1ϑσ(ν1+ν2x+y2)12[10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη+10ηϑ1σ(ν1+ν2(1+η2x+1η2y))dη]=12[2ϑ(yx)ϑν1+ν2x+y2ν1+ν2y((ν1+ν2x+y2)w)ϑ1σ(w)dw+2ϑ(yx)ϑν1+ν2xν1+ν2x+y2(w(ν1+ν2x+y2))ϑ1σ(w)dw]=2ϑ1Γ(ϑ)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)],

    and thus the proof of first inequality in (2.1) is completed.

    On the other hand, we have by using the Jensen-Mercer inequality:

    σ(ν1+ν2(1η2x+1+η2y))σ(ν1)+σ(ν2)(1η2σ(x)+1+η2σ(y)) (2.4)
    σ(ν1+ν2(1+η2x+1η2y))σ(ν1)+σ(ν2)(1+η2σ(x)+1η2σ(y)). (2.5)

    Adding inequalities (2.4) and (2.5) to get

    σ(ν1+ν2(1η2x+1+η2y))+σ(ν1+ν2(1+η2x+1η2y))2[σ(ν1)+σ(ν2)][σ(x)+σ(y)]. (2.6)

    Multiplying both sides of (2.6) by ηϑ1 and then integrating with respect to η over [0,1] to obtain

    10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη+10ηϑ1σ(ν1+ν2(1+η2x+1η2y))dη2ϑ[σ(ν1)+σ(ν2)]1ϑ[σ(x)+σ(y)].

    By making use of change of variables and then multiplying by ϑ2, we get the second inequality in (2.1).

    Remark 2.1. If we choose ϑ=1, x=ν1 and y=ν2 in Theorem 2.1, then the inequality (2.1) reduces to (1.1).

    Corollary 2.1. Theorem 2.1 with

    ϑ=1 becomes [24, Theorem 2.1].

    x=ν1 and y=ν2 becomes:

    σ(ν1+ν22)2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1)+σ(ν2)2,

    which is obtained by Mohammed and Brevik in [10].

    The following Lemma linked with the left inequality of (2.1) is useful to obtain our next results.

    Lemma 2.1. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and σL[ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)=(yx)410ηϑ[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη. (2.7)

    Proof. From right hand side of (2.7), we set

    ϖ1ϖ2:=10ηϑ[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη=10ηϑσ(ν1+ν2(1η2x+1+η2y))dη10ηϑσ(ν1+ν2(1+η2x+1η2y))dη. (2.8)

    By integrating by parts with w=ν1+ν2(1η2x+1+η2y), we can deduce:

    ϖ1=2(yx)σ(ν1+ν2y)+2ϑ(yx)10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη=2(yx)σ(ν1+ν2y)+2ϑ+1ϑ(yx)ϑ+1ν1+ν2x+y2ν1+ν2yσ((ν1+ν2x+y2)w)ϑ1σ(w)dw=2(yx)σ(ν1+ν2y)+2ϑ+1Γ(ϑ+1)(yx)ϑ+1Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2).

    Similarly, we can deduce:

    ϖ2=2yxσ(ν1+ν2x)2ϑ+1Γ(ϑ+1)(yx)ϑ+1Jϑ(ν1+ν2x)σ(ν1+ν2x+y2).

    By substituting ϖ1 and ϖ2 in (2.8) and then multiplying by (yx)4, we obtain required identity (2.7).

    Corollary 2.2. Lemma 2.1 with

    ϑ=1 becomes:

    1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)=(yx)410η[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη.

    ϑ=1, x=ν1 and y=ν2 becomes:

    1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)=(ν2ν1)410η[σ(ν1+ν2(1η2ν1+1+η2ν2))σ(ν1+ν2(1+η2ν1+1η2ν2))]dη.

    x=ν1 and y=ν2 becomes:

    2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)=(ν2ν1)410ηϑ[σ(ν1+ν2(1η2ν1+1+η2ν2))σ(ν1+ν2(1+η2ν1+1η2ν2))]dη.

    Theorem 2.2. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ| is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)2(1+ϑ)[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2]. (2.9)

    Proof. By taking modulus of identity (2.7), we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4[10ηϑ|σ(ν1+ν2(1η2x+1+η2y))|dη+10ηϑ|σ(ν1+ν2(1+η2x+1η2y))|dη].

    Then, by applying the convexity of |σ| and the Jensen-Mercer inequality on above inequality, we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4[10ηϑ[|σ(ν1)|+|σ(ν2)|(1+η2|σ(x)|+1η2)|σ(y)|]dη+10ηϑ[|σ(ν1)|+|σ(ν2)|(1η2|σ(x)|+1+η2)|σ(y)|]dη]=(yx)2(1+ϑ)[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2],

    which completes the proof of Theorem 2.2.

    Corollary 2.3. Theorem 2.2 with

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)4[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2].

    ϑ=1, x=ν1 and y=ν2 becomes [27, Theorem 2.2].

    x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(ν2ν1)4[|σ(ν1)|+|σ(ν2)|2].

    Theorem 2.3. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ|q,q>1 is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4pϑp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q], (2.10)

    where 1p+1q=1.

    Proof. By taking modulus of identity (2.7) and using Hölder's inequality, we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑp)1p{(10|σ(ν1+ν2(1η2x+1+η2y))|qdη)1q+(10|σ(ν1+ν2(1+η2x+1η2y))|qdη)1q}.

    Then, by applying the Jensen-Mercer inequality with the convexity of |σ|q, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑp)1p{(10|σ(ν1)|q+|σ(ν2)|q(1η2|σ(x)|q+1+η2|σ(y)|q))1q+(10|σ(ν1)|q+|σ(ν2)|q(1+η2|σ(x)|q+1η2|σ(y)|q))1q}=(yx)4pϑp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q],

    which completes the proof of Theorem 2.3.

    Corollary 2.4. Theorem 2.3 with

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)4pp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q].

    ϑ=1, x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(ν2ν1)22p(1p+1)1p[|σ(ν1)|+|σ(ν2)|].

    x=ν1 and y=ν2 becomes:

    |2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)|2ϑ12qν2ν1(1p+1)1p[|σ(ν1)|+|σ(ν2)|].

    Theorem 2.4. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ|q,q1 is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(ϑ+1)[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+(2ϑ+3)|σ(y)|q2(ϑ+2)))1q+(|σ(ν1)|q+|σ(ν2)|q((2ϑ+3)|σ(x)|q+|σ(y)|q2(ϑ+2)))1q]. (2.11)

    Proof. By taking modulus of identity (2.7) with the well-known power mean inequality, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑ)11q{(10ηϑ|σ(ν1+ν2(1η2x+1+η2y))|qdη)1q+(10ηϑ|σ(ν1+ν2(1+η2x+1η2y))|qdη)1q}.

    By applying the Jensen-Mercer inequality with the convexity of |σ|q, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑ)11q{(10ηϑ[|σ(ν1)|q+|σ(ν2)|q(1η2|σ(x)|q+1+η2|σ(y)|q)])1q+(10ηϑ[|σ(ν1)|q+|σ(ν2)|q(1+η2|σ(x)|q+1η2|σ(y)|q)])1q}=(yx)4(ϑ+1)[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+(2ϑ+3)|σ(y)|q2(ϑ+2)))1q+(|σ(ν1)|q+|σ(ν2)|q((2ϑ+3)|σ(x)|q+|σ(y)|q2(ϑ+2)))1q],

    which completes the proof of Theorem 2.4.

    Corollary 5. Theorem 2.4 with

    q=1 becomes Theorem 2.2.

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)8[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+5|σ(y)|q6))1q+(|σ(ν1)|q+|σ(ν2)|q(5|σ(x)|q+|σ(y)|q6))1q].

    ϑ=1, x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(yx)8[(5|σ(ν1)|q+|σ(ν2)|q6)1q+(|σ(ν1)|q+5|σ(ν2)|q6)1q].

    x=ν1 and y=ν2 becomes:

    |2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)|(ν2ν1)4(ϑ+1)[((2ϑ+3)|σ(ν1)|q+|σ(ν2)|q2(ϑ+2))1q+(|σ(ν1)|q+(2ϑ+3)|σ(ν2)|q2(ϑ+2))1q].

    Here, we consider the following special means:

    ● The arithmetic mean:

    A(ν1,ν2)=ν1+ν22,ν1,ν20.

    ● The harmonic mean:

    H(ν1,ν2)=2ν1ν2ν1+ν2,ν1,ν2>0.

    ● The logarithmic mean:

    L(ν1,ν2)={ν2ν1lnν2lnν1,ifν1ν2,ν1,ifν1=ν2,ν1,ν2>0.

    ● The generalized logarithmic mean:

    Ln(ν1,ν2)={[νn+12νn+11(n+1)(ν2ν1)]1n,ifν1ν2ν1,ifν1=ν2,ν1,ν2>0;nZ{1,0}.

    Proposition 3.1. Let 0<ν1<ν2 and nN, n2. Then, for all x,y[ν1,ν2], we have:

    |Lnn(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))n|n(yx)4[2A(νn11,νn12)A(xn1,yn1)]. (3.1)

    Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=xn,x>0, one can obtain the result directly.

    Proposition 3.2. Let 0<ν1<ν2. Then, for all x,y[ν1,ν2], we have:

    |L1(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))1|(yx)4[2H1(ν21,ν22)H1(x2,y2)]. (3.2)

    Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.

    Proposition 3.3. Let 0<ν1<ν2 and nN, n2. Then, we have:

    |Lnn(ν1,ν2)An(ν1,ν2)|n(ν2ν1)4[A(νn11,νn12)], (3.3)

    and

    |L1(ν1,ν2)A1(ν1,ν2)|(ν2ν1)4H1(ν21,ν22). (3.4)

    Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.1 and Proposition 3.2, one can obtain the Proposition 3.3.

    Proposition 3.4. Let 0<ν1<ν2 and nN, n2. Then, for q>1,1p+1q=1 and for all x,y[ν1,ν2], we have:

    |Lnn(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))n|n(yx)4pp+1{[2A(νq(n1)1,νq(n1)2)12A(xq(n1),3yq(n1))]1q+[2A(νq(n1)1,νq(n1)2)12A(3xq(n1),yq(n1))]1q}. (3.5)

    Proof. By applying Corollary 2.4 (first item) for convex function σ(x)=xn,x>0, one can obtain the result directly.

    Proposition 3.5. Let 0<ν1<ν2. Then, for q>1,1p+1q=1 and for all x,y[ν1,ν2], we have:

    |L1(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))1|q2(yx)4pp+1{[H1(ν2q1,ν2q2)34H1(x2q,3y2q)]1q+[H1(ν2q1,ν2q2)34H1(3x2q,y2q)]1q}. (3.6)

    Proof. By applying Corollary 2.4 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.

    Proposition 3.6. Let 0<ν1<ν2 and nN, n2. Then, for q>1 and 1p+1q=1, we have:

    |Lnn(ν1,ν2)An(ν1,ν2)|n(ν2ν1)4pp+1{[2A(νq(n1)1,νq(n1)2)12A(νq(n1)1,3νq(n1)2)]1q+[2A(νq(n1)1,νq(n1)2)12A(3νq(n1)1,νq(n1)2)]1q}, (3.7)

    and

    |L1(ν1,ν2)A1(ν1,ν2)|q2(ν2ν1)4pp+1{[H1(ν2q1,ν2q2)34H1(ν2q1,3ν2q2)]1q+[H1(ν2q1,ν2q2)34H1(3ν2q1,ν2q2)]1q}. (3.8)

    Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.4 and Proposition 3.5, one can obtain the Proposition 3.6.

    As we emphasized in the introduction, integral inequality is the most important field of mathematical analysis and fractional calculus. By using the well-known Jensen-Mercer and power mean inequalities, we have proved new inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. In the last section, we have considered some propositions in the context of special functions; these confirm the efficiency of our results.

    We would like to express our special thanks to the editor and referees. Also, the first author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

    The authors declare no conflict of interest.



    [1] K. Polyak, Heterogeneity in breast cancer, J. Clin. Invest., 121 (2011), 3786-3788. doi: 10.1172/JCI60534
    [2] E. M. Bublil, Y. Yarden, The EGF receptor family: spearheading a merger of signaling and therapeutics, Curr. Opin. Cell Biol., 19 (2007), 124-134. doi: 10.1016/j.ceb.2007.02.008
    [3] D. J. Slamon, G. M. Clark, S. G. Wonf, et al. HUMAN-BREAST CANCER - CORRELATION OF RELAPSE AND SURVIVAL WITH AMPLIFICATION OF THE HER-2 NEU ONCOGENE, Science, 235 (1987), 177-182. doi: 10.1126/science.3798106
    [4] D. H. Yu, M. C. Hung, Overexpression of ErbB2 in cancer and ErbB2-targeting strategies, Oncogene, 19 (2000), 6115-6121. doi: 10.1038/sj.onc.1203972
    [5] W. Tai, R. Mahato, K. Cheng, The role of HER2 in cancer therapy and targeted drug delivery, J. Control RELEASE, 146 (2010), 264-275. doi: 10.1016/j.jconrel.2010.04.009
    [6] F. Xu, L. Na, Y. Li, et al. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours, CELL Biosci., 10 (2020), 1-12. doi: 10.1186/s13578-019-0370-3
    [7] B. Ji, Y. Zhang, C. Zhen, et al. Mathematical modelling of bone remodelling cycles including the NF kappa B signalling pathway, Comput. Biol. Med., 107 (2019), 257-264. doi: 10.1016/j.compbiomed.2019.03.003
    [8] B. Ji, J. Chen, C. Zhen, et al. Mathematical modelling of the role of Endo180 network in the development of metastatic bone disease in prostate cancer, Comput. Biol. Med., 117 (2020), 103619.
    [9] B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nat. Biotechnol., 20 (2002), 370-375. doi: 10.1038/nbt0402-370
    [10] M. Hatakeyama, S. Kimura, T. Naka, et al. (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling, Biochem. J., 373 (2003), 451-463.
    [11] G. Koh, H. F. C. Teong, M. V. Clément, et al. A decompositional approach to parameter estimation in pathway modeling: A case study of the Akt and MAPK pathways and their crosstalk, Bioinformatics, 22 (2006), e271-e280.
    [12] S. Itani, J. Gray, C. J. Tomlin, An ODE model for the HER2/3-AKT signaling pathway in cancers that overexpress HER2, Proc. 2010 Am. Control Conf., (2010), 1235-1241.
    [13] D. C. Kirouac, J. Y. Du, J. Lahdenranta, et al. Computational Modeling of ERBB2-Amplified Breast Cancer Identifies Combined ErbB2/3 Blockade as Superior to the Combination of MEK and AKT Inhibitors, Sci. Signal., 6 (2013), ra68.
    [14] E. Shankar, M. C. Weis, J. Avva, et al. Complex Systems Biology Approach in Connecting PI3K-Akt and NF-kappa B Pathways in Prostate Cancer, CELLS, 8 (2019).
    [15] Z. Eroglu, T. Tagawa, G. Somlo, Human Epidermal Growth Factor Receptor Family-Targeted Therapies in the Treatment of HER2-Overexpressing Breast Cancer, Oncologist, 19 (2014), 135-150. doi: 10.1634/theoncologist.2013-0283
    [16] M. Ramesh, N. Krishnan, S. K. Muthuswamy, et al. A novel phosphatidic acid-protein-tyrosine phosphatase D2 axis is essential for ERBB2 signaling in mammary epithelial cells, J. Biol. Chem., 290 (2015), 9646-9659. doi: 10.1074/jbc.M114.627968
    [17] F. J. Esteva, H. Guo, S. Zhang, et al. PTEN, PIK3CA, p-AKT, and p-p70S6K Status Association with Trastuzumab Response and Survival in Patients with HER2-Positive Metastatic Breast Cancer, Am. J. Pathol., 177 (2010), 1647-1656. doi: 10.2353/ajpath.2010.090885
    [18] R. Slaaby, T. Jensen, H. S. Hansen, et al. PLD2 complexes with the EGF receptor and undergoes tyrosine phosphorylation at a single site upon agonist stimulation, J. Biol. Chem., 273 (1998), 33722-33727. doi: 10.1074/jbc.273.50.33722
    [19] R. C. Bruntz, C. W. Lindsley, H. A. Brown, Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer, Pharmacol. Rev., 66 (2014), 1033-1079. doi: 10.1124/pr.114.009217
    [20] Y. Yarden, M. X. Sliwkowski, Untangling the ErbB signalling network, Nat. Rev. Mol. CELL Biol., 2 (2001), 127-137. doi: 10.1038/35052073
    [21] J. Saez-Rodriguez, A. MacNamara, S. Cook, Modeling Signaling Networks to Advance New Cancer Therapies, ANNU. REV. BIOMED. ENG., 17 (2015), 143-163. doi: 10.1146/annurev-bioeng-071813-104927
    [22] A. Eladdadi, D. Isaacson, A mathematical model for the effects of HER2 overexpression on cell proliferation in breast cancer, Bull. Math. Biol., 70 (2008), 1707-1729. doi: 10.1007/s11538-008-9315-4
    [23] C. Frank, H. Keilhack, F. Opitz, et al. Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation, Biochemistry, 38 (1999), 11993-12002. doi: 10.1021/bi982586w
    [24] P. E. Selvy, R. R. Lavieri, C. W. Lindsley, et al. Phospholipase D: Enzymology, Functionality, and Chemical Modulation, Chem. Rev., 111 (2011), 6064-6119. doi: 10.1021/cr200296t
    [25] Y. A. Adi, F. A. Kusumo, L. Aryati, et al. A Mathematical Model of Phosphorylation AKT in Acute Myeloid Leukemia, SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2015), 1723 (2016), 030001.
    [26] L. Lenoci, M. Duvernay, S. Satchell, et al. Mathematical model of PAR1-mediated activation of human platelets, Mol. Biosyst., 7 (2011), 1129-1137. doi: 10.1039/c0mb00250j
    [27] R. J. Buxeda, J. T. Nickels, C. J. Belunis, et al. PHOSPHATIDYLINOSITOL 4-KINASE FROM SACCHAROMYCES-CEREVISIAE. KINETIC-ANALYSIS USING TRITON X-100 PHOSPHATIDYLINOSITOL-MIXED MICELLES, J. Biol. Chem., 266 (1991), 13859-13865.
    [28] L. G. Henage, J. H. Exton, H. A. Brown, Kinetic analysis of a mammalian phospholipase D - Allosteric modulation by monomeric GTPases, protein kinase C, and polyphosphoinositides, J. Biol. Chem., 281 (2006), 3408-3417. doi: 10.1074/jbc.M508800200
    [29] W. H. Tan, A. S. Popel, F. Mac Gabhann, Computational Model of Gab1/2-Dependent VEGFR2 Pathway to Akt Activation, PLoS One, 8 (2013), 1-17.
    [30] A. De Luca, M. R. Maiello, A. D'Alessio, et al. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches, Expert Opin. Ther. Tar., 16 (2012), S17-S27.
    [31] M. Kanehisa, S. Goto, Y. Sato, et al. KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40 (2012), D109-D114.
    [32] A. Dittrich, H. Gautrey, D. Browell, et al. The HER2 Signaling Network in Breast Cancer-Like a Spider in its Web, J. Mammary Gland Biol. Neoplasia, 19 (2014), 253-270. doi: 10.1007/s10911-014-9329-5
  • This article has been cited by:

    1. Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830
    2. Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad, (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates, 2021, 6, 2473-6988, 4677, 10.3934/math.2021275
    3. Ifra Bashir Sial, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, Thanin Sitthiwirattham, On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions, 2022, 11, 2075-1680, 132, 10.3390/axioms11030132
    4. Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709
    5. Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019
    6. Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392
    7. Churong Chen, Discrete Caputo Delta Fractional Economic Cobweb Models, 2023, 22, 1575-5460, 10.1007/s12346-022-00708-5
    8. Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836
    9. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953
    10. Loredana Ciurdariu, Eugenia Grecu, Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions, 2024, 13, 2075-1680, 413, 10.3390/axioms13060413
    11. Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis, Asma Hanif, Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications, 2024, 13, 2075-1680, 114, 10.3390/axioms13020114
    12. Muhammad Aamir Ali, Christopher S. Goodrich, On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus, 2024, 44, 0174-4747, 35, 10.1515/anly-2023-0019
    13. Thanin Sitthiwirattham, Ifra Sial, Muhammad Ali, Hüseyin Budak, Jiraporn Reunsumrit, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, 2023, 37, 0354-5180, 5553, 10.2298/FIL2317553S
    14. Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331
    15. Bahtiyar Bayraktar, Péter Kórus, Juan Eduardo Nápoles Valdés, Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators, 2023, 12, 2075-1680, 517, 10.3390/axioms12060517
    16. THANIN SITTHIWIRATTHAM, MIGUEL VIVAS-CORTEZ, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, İBRAHIM AVCI, A STUDY OF FRACTIONAL HERMITE–HADAMARD–MERCER INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS, 2024, 32, 0218-348X, 10.1142/S0218348X24400164
    17. Muhammad Ali, Hüseyin Budak, Elisabeth Köbis, Some new and general versions of q-Hermite-Hadamard-Mercer inequalities, 2023, 37, 0354-5180, 4531, 10.2298/FIL2314531A
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5851) PDF downloads(379) Cited by(2)

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog