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Abstract: ErbB2 overexpression plays an important pathogenic role in breast cancer and acts via 

phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signalling pathways. Mathematical 

models for the PI3K/AKT signalling pathways have been derived but have not incorporated a newly 

defined positive regulator of the ErbB2 signalling network, phosphatidic acid-protein-tyrosine 

phosphatase D2 (PTPD2). We hypothesize that PTPD2 acts on the AKT signalling pathway by 

binding PA to PTPD2 and participates in AKT phosphorylation through PIP3. Based on this, a new 

mathematical model of ErbB2/P13K/AKT and PLD2/PTPD2 pathways was derived using 22 

ordinary differential equations. The derived simulation results were consistent with the experimental 

results. This model is used to study the change of ppAKT concentration with time at different initial 

concentrations of PDPD2, PLD2, PI3K and PTEN in the signal pathway. Taken together, these 

observations suggest therapeutic approaches for erbb2-positive breast cancer which is resistant to 

ErbB2 targeted therapy based on inhibitors for PI3K, PTPD2 or PLD2. 
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1. Introduction  

Breast cancer is one of the most common cancers, a main cause for mortality due to cancer in 

women worldwide [1]. Central to many forms of breast cancer is the altered activities of the ErbB 

family members which are receptor tyrosine kinases, all structurally related to the epidermal growth 

factor receptor (EGFR) including Her1 (EGFR, ErbB1), Her2 (Neu, ErbB2), Her3 (ErbB3), and Her4 

(ErbB4) [2]. About 25% of breast cancer patients display an overexpression of ErbB2, which plays a 

pathogenic role in breast cancer [3]. ErbB2 overexpression at the early stages of the disease is linked 

to a poor prognosis and is related to the development of invasive tumors [4]. Therefore, 

understanding of the regulation of ErbB2 signalling is essential for the treatment of breast cancer. 

ErbB2 (HER2/Neu) is the only receptor in the EGFR family that has no specific ligand [5]. 

Where ErbB2 is overexpressed, it will self-activate or can form a heterodimer with ErbB1, ErbB3 or 

ErbB4. Following such events, ErbB2 then undergoes autophosphorylation, producing a 

phosphotyrosine site that recruits and activates signalling complexes. This leads to the activation of 

the effector pathway, mainly the RAS/mitogen activated kinase (MAPK) and the phosphoinositide 

3-kinase (PI3K)/protein kinase B (AKT) signalling pathways [6]. Mathematical modelling is a 

popular method to study signal pathways, especially for complex signal networks [7,8]. To better 

understand how the many ErbB1-linked signalling components function in different contexts, 

mathematical modelling is used to provide new insights. Thus, Schoeberl et al. established a 

computational model for EGF receptor-induced MAPK kinase pathway, suggesting that the signal 

efficacy is primarily dependent on the initial velocity of receptor activation [9]. Others [10] have 

generated a computer simulation model of the HRG (Heregulin Beta1) induced ErbB4 signalling and 

model simulations indicate that the HRG pathway is regulated by PP2A (protein phosphatase 2A) 

and the interaction between RAF and AKT. 

The same PI3K / AKT and MAPK pathways and crosstalk mechanisms were modeled using the 

parameter estimation decomposition method by mixed-function Petri nets [11], and supported a new 

hypothesized interacting mechanism between the Akt pathway to the MAPK pathway. A different 

approach based on ODEs (ordinary differential equations) modelling was used for the HER2/3-AKT 

signalling pathway in order to study cancers that overexpress HER2 [12]. This model helped to 

understand evaluate the efficacies of several therapies and further proposed a potential 

“steering-based” treatment scheme for cancers that overexpress HER2. The importance of signalling 

pathway modelling was illustrated in a ErbB2/3 network model which was used to design a treatment 

regimen for ErbB2-positive cancer by using quantitative logic. This indicated that a combination of 

inhibitors which targeted ErbB3 and ErbB2 is more effective than targeting AKT and the 

mitogen-activated protein kinase MEK [13]. Recently, the PI3K-Akt and NF-κB signaling pathways 

have been found to play a key role in the progression of prostate cancer. Shankar et al. used a 

complex systems biology approach that focused on a multi-layered, hierarchical paradigm to model 

these pathways modularized to identify the components that played a coordinating role in the two 

pathways [14]. 

These studies have modeled several aspects of the ErbB2 signalling network but on-going 

research demands that such models need to be constantly updated, especially if the clinical treatment 

of breast cancer has been optimized. Clinical treatment of ErbB2-positive breast cancer is mainly 

based on the drugs that specifically target the ErbB2 protein, such as trastuzumab (herceptin). 

Inhibiting ErbB2 activity results in tumor cells showing a degree of apoptosis but surviving cells 



4948 
 

AIMS Mathematics  Volume 5, Issue 5, 4946–4958. 

develop drug resistance in about 80% of patients [15]. A new positive regulator of ErbB2 signalling 

network, PTPD2 has been found to act via PI3K / AKT signalling [16] which crucially has been 

associated with resistance to drug therapies [17]. Given this key new finding, we here derive a 

mathematical model for the PI3K / AKT signalling pathway which incorporates PTPD2 axis to 

explore the treatment of ErbB2-positive breast cancer and resistance to its treatment. 

2. Materials and method 

2.1. Basic structure of the model 

 

Figure 1. A schematic description of the ErbB2 signalling pathway. 

In this model, it is assumed that the activation of the PI3K / AKT signalling pathway and 

PTPD2 arises following phosphorylation of ErbB2. This is shown in details in Figure 1 which also 

highlights the lack of ligand binding. The phospholipase D2 (PLD2) /PTPD2 pathway is described in 

the upper right of Figure 1. PLD2 is an enzyme involved in the processing of phosphatidylcholine 

(PC) to produce phosphatidic acid (PA) and choline (C) [18]. Following activation, PLD2 is recruited 

to the plasma membrane where it binds to PC which is hydrolyzed to PA [19]. PA binding to PTPD2 

enhances its phosphatase activity [16] to influence in the downstream pathway of ErbB2. 

The PI3K/AKT pathway is described by the down left side of Figure 1. Orthodox ErbB2 

pathways include RAS/MAPK and PI3K/AKT [20]. However, Ramesh et al. found that AKT 

signalling inhibited PTPD2, whilst MAP and ERK, did not change significantly [16]. Therefore, we 

here concentrate only on modelling the PI3K/AKT signalling pathway, without the RAS/MARK 

component to make the model more concise. Model of PI3K/AKT pathway involves the following 

consecutive steps: 1) The activated phosphoinositide3-kinase (PI3K) dimerizes with 

phosphatidylinositol-4, 5-biphosphate (PIP2) to form a dimer PIP2-PI3K. 2) PIP2 is 

autophosphorylated on PIP2-PI3K that decomposes into PI3K and phosphatidylinositol-3, 4, 

5-triphosphate (PIP3) [21]. 3) Phosphatase and tensin homolog (PTEN) removes the phosphorus 

from PIP3, by binding with PIP3 and forming a complex PIP3-PTEN, and thus changes PIP3 into 

PIP2. 4) PIP3 and AKT combine into a complex PIP3-AKT, on which AKT can phosphorylate to 
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ppAKT [22]. 5) PP2A is an enzyme that dephosphorylates ppAKT to AKT by binding to ppAKT to 

form PP2A-ppAKT, on which ppAKT is dephosphorylated to produce PP2A and AKT. 

How AKT and PTPD2 interact has not been documented, but can be inferred from the 

experimental results of Ramesh et al. that phosphorylated AKT decreases the inhibition of PTPD2 

group without a change in phosphorylated ERK [16]. The PI3K/AKT pathway interacts with the 

RAF/MEK/ERK pathway: PIP3 can activate MEK through PDK1, which affects ERK 

phosphorylation [11]. PTP SHP-1 which belongs to Classical PTPs with PTPD2 can be combined 

with both PA and PIP3 [23]. We suggest that PTPD2-PA promotes the phosphorylation of AKT by 

binding to PIP3-AKT to form a PIP3-AKT-PTPD2-PA complex. AKT phosphorylation of this 

complex decomposes into ppAKT, PTPD2, PIP3 and PA, which has a higher activation rate than that 

of PIP3-AKT. 

2.2. Model equations 

The model uses 22 ODEs to simulate the biochemical reaction of the PI3K/AKT signalling 

pathway and the PLD2/PTPD2 pathway, and the relation between them after activation (Figure 1). 

The first seven formulas (Eqs (1)–(8)) describe the changes in the concentrations of each component 

of the PLD2/PTPD2 signalling pathway with time. The remaining 14 formulas (Eqs (9)–(22)) 

describe the variation in the concentrations of each component of the PTPD2-affected PI3K/AKT 

signalling pathway. The hydrolysis process of phosphatidylcholine (PC) is based on interfacial 

kinetics and interfacial binding is considered [24]. According to these theoretical considerations the 

following equations are presented: 

𝑑

𝑑𝑡
𝑃𝐿𝐷2 𝑡 = −𝑏1 ∗ 𝑃𝐿 𝑡 ∗ 𝑃𝐿𝐷2 𝑡 + 𝑑1 ∗ 𝑃𝐿~𝑃𝐿𝐷2 𝑡  (1) 

𝑑

𝑑𝑡
𝑃𝐿 𝑡 = −𝑏1 ∗ 𝑃𝐿 𝑡 ∗ 𝑃𝐿𝐷2 𝑡 + 𝑑1 ∗ 𝑃𝐿~𝑃𝐿𝐷2 𝑡  (2) 

𝑑

𝑑𝑡
𝑃𝐿~𝑃𝐿𝐷2 𝑡 

= 𝑏1 ∗ 𝑃𝐿 𝑡 ∗ 𝑃𝐿𝐷2 𝑡 − 𝑑1 ∗ 𝑃𝐿~𝑃𝐿𝐷2 𝑡 − 𝑏2

∗ 𝑃𝐿~𝑃𝐿𝐷2 𝑡 ∗ 𝑃𝐶 𝑡 + (𝑑2 + 𝑘1) ∗ 𝑃𝐿~𝑃𝐿𝐷2~𝑃𝐶 𝑡  

(3) 

𝑑

𝑑𝑡
𝑃𝐶 𝑡 = −𝑏2 ∗ 𝑃𝐿~𝑃𝐿𝐷2 𝑡 ∗ 𝑃𝐶 𝑡 + 𝑑2 ∗ 𝑃𝐿~𝑃𝐿𝐷2~𝑃𝐶 𝑡  (4) 

𝑑

𝑑𝑡
𝑃𝐿~𝑃𝐿𝐷2~𝑃𝐶 𝑡 

= 𝑏2 ∗ 𝑃𝐿~𝑃𝐿𝐷2 𝑡 ∗ 𝑃𝐶 𝑡 − (𝑑2 + 𝑘1) ∗ 𝑃𝐿~𝑃𝐿𝐷2~𝑃𝐶 𝑡  
(5) 

𝑑

𝑑𝑡
𝑃𝐴 𝑡 = 𝑘1 ∗ 𝑃𝐿~𝑃𝐿𝐷2~𝑃𝐶 𝑡 − 𝑏3 ∗ 𝑃𝐴 𝑡 ∗ 𝑃𝑇𝑃𝐷2 𝑡 + 𝑑3

∗ 𝑃𝐴~𝑃𝑇𝑃𝐷2 𝑡  
(6) 

𝑑

𝑑𝑡
𝐶 𝑡 = 𝑘1 ∗ 𝑃𝐿~𝑃𝐿𝐷2~𝑃𝐶 𝑡  (7) 

𝑑

𝑑𝑡
𝑃𝑇𝑃𝐷2 𝑡 = −𝑏3 ∗ 𝑃𝐴 𝑡 ∗ 𝑃𝑇𝑃𝐷2 𝑡 + 𝑑3 ∗ 𝑃𝐴~𝑃𝑇𝑃𝐷2 𝑡  (8) 

Based on Adi et al.’s mathematical model of phosphorylation AKT [25] and the hypothesis that 

PTPD2 promotes AKT phosphorylation by forming a PIP3-AKT-PTPD2-PA complex, our model 
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utilizes the following 14 ODEs to simulate the PI3K/AKT signalling pathway affected by PTPD2. 

𝑑

𝑑𝑡
𝑃𝐼3𝐾 𝑡 = −𝑏4 ∗ 𝑃𝐼𝑃2 𝑡 ∗ 𝑃𝐼3𝐾 𝑡 + (𝑑4 + 𝑘2) ∗ 𝑃𝐼𝑃2~𝑃𝐼3𝐾 𝑡  (9) 

𝑑

𝑑𝑡
𝑃𝐼𝑃2 𝑡 = −𝑏4 ∗ 𝑃𝐼𝑃2 𝑡 ∗ 𝑃𝐼3𝐾 𝑡 + 𝑑4 ∗ 𝑃𝐼𝑃2~𝑃𝐼3𝐾 𝑡 + 𝑘3

∗ 𝑃𝐼𝑃3~𝑃𝑇𝐸𝑁 𝑡  
(10) 

𝑑

𝑑𝑡
𝑃𝐼𝑃2~𝑃𝐼3𝐾 𝑡 = 𝑏4 ∗ 𝑃𝐼3𝐾 𝑡 ∗ 𝑃𝐼𝑃2 𝑡 − (𝑑4 + 𝑘2) ∗ 𝑃𝐼𝑃2~𝑃𝐼3𝐾 𝑡   (11) 

𝑑

𝑑𝑡
𝑃𝐼𝑃3 𝑡 = 𝑑4 ∗ 𝑃𝐼𝑃2~𝑃𝐼3𝐾 𝑡 − 𝑏5 ∗ 𝑃𝐼𝑃3 𝑡 ∗ 𝑃𝑇𝐸𝑁 𝑡 + 𝑑5

∗ 𝑃𝐼𝑃3~𝑃𝑇𝐸𝑁 𝑡 − 𝑏6 ∗ 𝑃𝐼𝑃3 𝑡 ∗ 𝐴𝐾𝑇 𝑡 + 𝑑6 ∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇 𝑡 

+ 𝑘5 ∗ 𝑃𝐼𝑃3~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡  

(12) 

𝑑

𝑑𝑡
𝑃𝑇𝐸𝑁 𝑡 = −𝑏5 ∗ 𝑃𝐼𝑃3 𝑡 ∗ 𝑃𝑇𝐸𝑁 𝑡 + (𝑑5 + 𝑘3) ∗ 𝑃𝐼𝑃3~𝑃𝑇𝐸𝑁 𝑡  (13) 

𝑑

𝑑𝑡
𝑃𝐼𝑃3~𝑃𝑇𝐸𝑁 𝑡 = 𝑏5 ∗ 𝑃𝐼𝑃3 𝑡 ∗ 𝑃𝑇𝐸𝑁 𝑡 − (𝑑5 + 𝑘3) ∗ 𝑃𝐼𝑃3~𝑃𝑇𝐸𝑁 𝑡  (14) 

𝑑

𝑑𝑡
𝐴𝐾𝑇 𝑡 = −𝑏6 ∗ 𝑃𝐼𝑃3 𝑡 ∗ 𝐴𝐾𝑇 𝑡 + 𝑑6 ∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇 𝑡 + 𝑘6

∗ 𝑃𝑃2𝐴~𝑝𝑝𝐴𝐾𝑇 𝑡  
(15) 

𝑑

𝑑𝑡
𝑃𝐼𝑃3~𝐴𝐾𝑇 𝑡 

= 𝑏6 ∗ 𝑃𝐼𝑃3 𝑡 ∗ 𝐴𝐾𝑇 𝑡 − 𝑑6 ∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇 𝑡 − 𝑏7

∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇 𝑡 ∗ 𝑃𝐴~𝑃𝑇𝑃𝐷2 𝑡 + 𝑑7

∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡  

(16) 

𝑑

𝑑𝑡
𝑃𝐴~𝑃𝑇𝑃𝐷2 𝑡 

= 𝑏3 ∗ 𝑃𝑇𝑃𝐷2 𝑡 ∗ 𝑃𝐴 𝑡 − 𝑑3 ∗ 𝑃𝐴~𝑃𝑇𝑃𝐷2 𝑡 − 𝑏7

∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇 𝑡 ∗ 𝑃𝐴~𝑃𝑇𝑃𝐷2 𝑡 + 𝑑7

∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡 + 𝑘5 ∗ 𝑃𝐼𝑃3~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡  

(17) 

𝑑

𝑑𝑡
𝑃𝐼𝑃3~𝐴𝐾𝑇~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡 

= 𝑏7 ∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇 𝑡 ∗ 𝑃𝐴~𝑃𝑇𝑃𝐷2 𝑡 − (𝑑7 + 𝑘4)

∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡  

(18) 

𝑑

𝑑𝑡
𝑃𝐼𝑃3~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡 

= 𝑘4 ∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡 −𝑘5 ∗ 𝑃𝐼𝑃3~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡  
(19) 

𝑑

𝑑𝑡
𝑝𝑝𝐴𝐾𝑇 𝑡 = 𝑘4 ∗ 𝑃𝐼𝑃3~𝐴𝐾𝑇~𝑃𝑇𝑃𝐷2~𝑃𝐴 𝑡 −𝑏8 ∗ 𝑝𝑝𝐴𝐾𝑇 𝑡 ∗ 𝑃𝑃2𝐴 𝑡  (20) 

𝑑

𝑑𝑡
𝑃𝑃2𝐴 𝑡 = −𝑏8 ∗ 𝑝𝑝𝐴𝐾𝑇 𝑡 ∗ 𝑃𝑃2𝐴 𝑡 + (𝑑8 + 𝑘5) ∗ 𝑃𝑃2𝐴~𝑝𝑝𝐴𝐾𝑇 𝑡   (21) 

𝑑

𝑑𝑡
𝑃𝑃2𝐴~𝑝𝑝𝐴𝐾𝑇 𝑡 

= 𝑏8 ∗ 𝑝𝑝𝐴𝐾𝑇 𝑡 ∗ 𝑃𝑃2𝐴 𝑡 − (𝑑8 + 𝑘5) ∗ 𝑃𝑃2𝐴~𝑝𝑝𝐴𝐾𝑇 𝑡  

 

(22) 
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 PLD2(t), PL(t), PC(t), PA(t), C(t) and PTPD2(t) represent concentrations of proteins of PLD2, 

PL, PC, PA and PTPD2, respectively. 

 PL~PLD2(t), PL~PLD2~PC(t) and PA~PTPD2 represent concentrations of these bi-molecular or 

tri-molecular complexes, respectively. 

 PI3T(t), PIP2(t), PIP3(t), PTEN(t), AKT(t), ppAKT(t) and PP2A(t) represent concentrations of 

proteins of PI3K, PIP2, PIP3, PTEN, ppAKT, AKT and PP2A respectively. 

 PIP2~PI3K(t), PIP3~PTEN(t), PIP3(t)~AKT(t), PIP3~AKT~PTPD2~PA(t), PIP3~PTPD2~PA(t) 

and PP2A~ppAKT(t) represent concentrations of these bi-molecular tri-molecular or 

four-molecular complexes respectively. 

Equations (1)–(22) describe the variation in concentrations of proteins and complexes involved in the 

PLD2/PTPD2 and PI3K/AKT pathways with time, respectively. For example, 
𝑑

𝑑𝑡
𝑃𝐿𝐷2 𝑡  is the 

variation of PLD2 with time as demonstrated in Eq (1), 𝑏1 represents the binding rate constant of 

PL and PLD2, 𝑑1 represents the dissociation rate constant of complex PL~PLD2. The definitions of 

all parameters in Eqs (1)–(22) are described in details in Table 1. 

Table 1. Definitions of model parameters used in the model. 

 Parameter Description 

𝒃𝟏 The binding rate constant of PL and PLD2 

𝒅𝟏 The dissociation rate constant of complex PL~PLD2 

𝒃𝟐 The binding rate constant of PL~PLD2 and PC 

𝒅𝟐 The dissociation rate constant of complex PL~PLD2~PC 

𝒌𝟏 The hydrolysis rate constant of PC 

𝒃𝟑 The binding rate constant of PTPD2 and PA 

𝒅𝟑 The dissociation rate constant of complex PA~PTPD2 

𝒃𝟒 The binding rate constant of PIP2 and PI3K 

𝒅𝟒 The dissociation rate constant of complex PIP2~PI3K 

𝒌𝟐 The phosphorylation rate constant of PIP2 on complex PIP2~PI3K 

𝒃𝟓 The binding rate constant of PIP3 and PTEN 

𝒅𝟓 The dissociation rate constant of complex PIP3~PTEN 

𝒌𝟑 The dephosphorylation rate constant of PIP3 on complex PIP3~PTEN 

𝒃𝟔 The binding rate constant of PIP3 and AKT 

𝒅𝟔 The dissociation rate constant of complex PIP3~AKT 

𝒃𝟕 The binding rate constant of PIP3~AKT and PA~PTPD2 

𝒅𝟕 The dissociation rate constant of complex PIP3~AKT~PTPD2~PA 

𝒌𝟒 The phosphorylation rate constant of AKT on complex PIP3~AKT~PTPD2~PA 

𝒌𝟓 The dissociation rate constant of complex PIP3~PTPD2~PA 

𝒃𝟖 The binding rate constant of PP2A and ppAKT 

𝒅𝟖 The dissociation rate constant of complex PP2A~ppAKT 

𝒌𝟔 The dephosphorylation rate constant of ppAKT on complex PP2A~ppAKT 

3. Results 

The values of parameters used in the model equations are described in Table 2. Following the 
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previous kinetic analysis of PLD by Henage et al. [26], the equation parameter values of PC axis are 

obtained through conversion and calculation. The equation parameter values of the PI3K / AKT 

signalling pathway are derived from the computational model of the AKT pathway developped by 

Wan et al. [27]. In addition, the parameter values of the equations related to PTPD2 are obtained by 

fitting the experimental data. 

Table 2.Values of parameters used in the model equations. 

Parameters Values Units Comments 

𝒃𝟏 1.0e-6 n𝑀−1𝑠−1 [26] 

𝒅𝟏 1.0+0 𝑠−1 [26] 

𝒃𝟐 1.0e-3 n𝑀−1𝑠−1 [27] 

𝒅𝟐 1.0e-1 𝑠−1 [27] 

𝒌𝟏 3.6e+3 𝑠−1 [28] 

𝒃𝟑 5.0e-4 n𝑀−1𝑠−1 Fitting 

𝒅𝟑 1.0e-1 𝑠−1 Fitting 

𝒃𝟒 5.0e-6 n𝑀−1𝑠−1 [29] 

𝒅𝟒 1.0e-1 𝑠−1 [29] 

𝒌𝟐 2.0e-1 𝑠−1 [29] 

𝒃𝟓 5.0e-6 n𝑀−1𝑠−1 [29] 

𝒅𝟓 1.0e-1 𝑠−1 [29] 

𝒌𝟑 1.0e-1 𝑠−1 [29] 

𝒃𝟔 2.6e-4 n𝑀−1𝑠−1 [29] 

𝒅𝟔 1.0e-1 𝑠−1 [29] 

𝒃𝟕 5.0e-6 n𝑀−1𝑠−1 Fitting 

𝒅𝟕 1.0e-1 𝑠−1 Fitting 

𝒌𝟒 3.0e+0 𝑠−1 Assumption 

𝒌𝟓 2.0e-1 𝑠−1 Assumption 

𝒃𝟖 1.7e-6 n𝑀−1𝑠−1 [29] 

𝒅𝟖 1.0e-1 𝑠−1 [29] 

𝒌𝟔 1.5e+0 𝑠−1 [29] 

The initial values of proteins in the model are listed in Table 3. They are amended to match the 

simulation results with the experimental data. In order to obtain the change of components 

concentration over time observed in the experimental data, Image J was used to process the protein 

electrophoretogram of time course experiment of the ERBB2 signaling pathway medium activation 

in the work of Ramesh et al. [16]. Then the relative concentrations of PTPD2 and ppAKT before and 

after PTPD2 knockout were obtained respectively. These data were used to serve as initial levels of 

corresponding components based on which we ran our simulations. The model equations were 

simplified in the simulation by assuming a quasi-steady-state where the concentration of enzyme - 

base complex remained constant. The simulation was performed using the Matlab software package 

(R2015b, Mathworks, Natick, USA), and the mathematical equations of the model were solved by 

the ode45 solver. 
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Table 3. Initial concentrations of proteins used in the simulation. 

Protein Value(𝐧𝐌) Protein Value(𝐧𝐌) 

PL 2.0e+5 PIP2 1.0e+4 

PLD2 1.0e+2 PIP3 0 

PC 4.0e+2 PTEN 3.5e+3 

PA 1.0e+2 AKT 7e+3 

C 1.0e+1 ppAKT 0 

PTPD2 2.0e+3/2.4e+2 PP2A 4e+3 

PI3K 1.0e+2   

Figure 2 shows the temporal variation in the normalized concentrations of ppAKT before and 

after PTPD2 knockdown, respectively, based on model simulation results, together with changes of 

normalized corresponding experimental data. The initial concentration of PTPD2 is set as 2000 nM 

and 240 nM before and after PTPD2 knockdown respectively. Figure 3 and Figure 4 demonstrate the 

variation of ppAKT concentration with different inintal concentration of PTPD2 and PLD2, 

respectively, aiming to investigate how the variations of PTPD2 and PLD2 affect ppAKT. The initial 

concentration of PTPD2 is set as 2000nM in Figure 4. Figure 5 presents the temporal variations in 

concentration of related components in the PI3K/AKT signalling pathway including PTPD2. The 

initial concentration of PTPD2 is set as 2000 nM. In order to observe the influence of PI3K and 

PTEN on ppAKT, Figure 6 and Figure 7 illustrate the temporal variations in ppAKT concentration 

with different initial concentrations of PI3K and PTEN, respectively. 

 

Figure 2. Model simulation of changes in normalized concentrations of ppAKT in the 

PI3K/AKT signalling pathway containing PTPD2, together with variations normalized 

corresponding experimental data before and after PTPD2 knockdown (The initial 

concentration of PTPD2 was set as 2000nM and 240nM, respectively). 
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Figure 3. Model simulation of changes in ppAKT concentration with different initial 

concentrations of PTPD2. 

 

Figure 4. Model simulation of changes in ppAKT concentration with different initial 

concentrations of PLD2 (The initial concentration of PTPD2 was set as 2000 nM). 

 

Figure 5. Model simulation of changes in components’ concentration in the PI3K/AKT 

signalling pathway including PTPD2 (The initial concentration of PTPD2 was set as 

2000 nM). 
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Figure 6. Model simulation of changes of ppAKT concentration with different initial 

concentrations of PI3K (The initial concentration of PTPD2 was set as 2000 nM). 

 
Figure 7. Model simulation of changes in ppAKT concentration with different initial 

concentrations of PTEN (The initial concentration of PTPD2 was set as 2000 nM). 

4. Discussion 

By modelling the PI3K/AKT signalling pathway and the newly discovered PTPD2 axis, the 

variation in the concentration of each component in the new PI3K/AKT signalling pathway over time 

after ErbB2 activation can be obtained. Further, the effect of other phosphatases on AKT 

phosphorylation can be investigated as well. 

These following results substantiate the validity of the established mathematical model. On the 

one hand, experimental results of Ramesh et al. [16] observations indicated that AKT was rapidly 

phosphorylated to ppAKT (within 5 minutes) under the acute activation of ErbB2 and that the 

inhibition of PTPD2 resulted in reduced AKT phosphorylation. Similar to the experiment by Ramesh 

et al. [16], after reducing the initial concentration of PTPD2 by about one-fifth, it was observed that 

the steady-state concentration of ppAKT also decreased by about one third. From Figure 2, we can 

see that the difference between the model simulation results and the experimental data is relatively 

small. As demonstrated in Figure 3 and Figure 4, the decrease in the initial concentration of PTPD2 
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and PLD2 delays the time to reach the peak for ppAKT or reduces the steady-state value of ppAKT, 

thereby reducing the phosphorylation level of AKT. This concentration effect is important as high 

levels of ppAKT drive the appearance of the multiacinar phenotype which has consequences in terms 

of carcinogenesis and treatment [30,31]. These results match the experimental conclusion of Ramesh 

et al. [16] that inhibition of PTPD2 and PLD2 can reduce the multiacinar phenotype of mammary 

epithelial cells. On the other hand, as shown in Figure 5, the simulation results show that the 

activaton of the PI3K/AKT pathway leads to an initial decreases and increases in PIP2 and AKT 

(PIP3 and ppAKT), respectively, and then a steady state after about 400 seconds. These results are 

consistent with the accepted modelling results by Adi et al. [25] of PI3K / AKT pathway without the 

new regulatory factors. 

Furthermore, high concentrations of ppAKT have been proven to lead to enhanced 

anti-apoptotic properties of cells. Therefore, the model was used to simulate the changes of ppAKT 

concentration over time at different initial concentrations of PTPD2 and PLD2. The simulation 

results show that the lower the initial concentration of PTPD2 and PLD2 was, the lower the 

time-integrated concentration of ppAKT (Figures 3 and 4). Then, the effect of the initial 

concentrations of other enzymes in the signalling pathway on ppAKT concentration was also studied. 

It is found that drop in the initial concentration of PI3K leads to decrease in the concentration of 

ppAKT. Whereas, the decrease in the initial concentration of PTEN causes the increase in the  

concentration of ppAKT (Figures 6 and 7). Therefore, high concentrations of PI3K, PTPD2 or PLD2 

can rapidly drive ppAKT accumulation. The steady levels of ppAKT that are achieved appear to be 

influenced by PI3K and PTPD2 concentrations.  

5. Conclusions 

ErbB2 overexpression plays an important pathogenic role in breast cancer. In ErbB2 positive 

breast cancer, the ErbB2 signalling network affects cell proliferation growth and survival [32]. 

Analysis of this signalling network by mathematical modelling will therefore be useful in 

understanding how components in this pathway contribute towards carcinogenic events. The 

PI3K/AKT signalling pathways have been previously mathematically modeled but fail to include the 

newly discovered the role of PTPD2 component. In this context, we derived a new mathematical 

model incorporating PTPD2 in the PI3K/AKT signalling pathway to explore the couplling 

mechanism between two pathways.  

In our model, we assumed that PTPD2 acts on the AKT signalling pathway by combining PA 

with PTPD2 and participates in AKT phosphorylation with PIP3. Based on this, we established a 

mathematical model including both PI3K/AKT and PLD2/PTPD2 pathways, and conducted 

simulation based on this model. Crucially, the simulation results were consistent with the 

experimental results of Ramesh et al. [16]. The model also partly explains why inhibiting PTPD2 can 

attenuate the multiacinar phenotype of mammary epithelial cells. We also studied the effect of the 

initial concentration of phosphatase on the change in ppAKT concentration. Taken together, these 

observations suggest therapeutic approaches for erbb2-positive breast cancer that is resistant to 

ErbB2 targeted therapy based on inhibitors for PI3K, PTPD2 or PLD2. 

Our model does not include the downstream pathway of ppAKT, nor does it establish a connection 

between the pathways or effects at the cellular level. Here, we have only demonstrated that the 

over-activation of PI3K and PTPD2 induces over-activation of ppAKT based on model simulations. In the 

future, future work is preferred to establish a more complete mathematical model of ErbB2 signalling 

network, exploring the relationship between the signalling pathway and breast cells. 
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