Research article Special Issues

Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation

  • Received: 21 October 2023 Revised: 24 November 2023 Accepted: 04 December 2023 Published: 07 December 2023
  • MSC : 35Q35, 35Q51

  • The initial data problem to a nonlinear shallow water wave equation in nonhomogeneous Besov space is discussed. Using the decomposition of Littlewood-Paley and the properties of nonhomogeneous Besov space, we establish the well-posedness of short time solutions for the equation in the Besov space. A blow-up criterion of solutions is also obtained.

    Citation: Chenchen Lu, Lin Chen, Shaoyong Lai. Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation[J]. AIMS Mathematics, 2024, 9(1): 1199-1210. doi: 10.3934/math.2024059

    Related Papers:

  • The initial data problem to a nonlinear shallow water wave equation in nonhomogeneous Besov space is discussed. Using the decomposition of Littlewood-Paley and the properties of nonhomogeneous Besov space, we establish the well-posedness of short time solutions for the equation in the Besov space. A blow-up criterion of solutions is also obtained.



    加载中


    [1] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165–186. https://doi.org/10.1007/s00205-008-0128-2 doi: 10.1007/s00205-008-0128-2
    [2] G. B. Whitham, Variational methods and applications to water waves, Proc. Roy. Soc. London, Ser. A, 299 (1967), 6–25. https://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119
    [3] G. Fornberg, G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. Ser., 289 (1978), 373–404. https://doi.org/10.1098/rsta.1978.0064 doi: 10.1098/rsta.1978.0064
    [4] S. V. Haziot, Wave breaking for the Fornberg-Whitham equation, J. Differ. Equations, 263 (2017), 8178–8185. https://doi.org/10.1016/j.jde.2017.08.037 doi: 10.1016/j.jde.2017.08.037
    [5] J. M. Holmes, Well-posedness of the Fornberg-Whitham equation on the circle, J. Differ. Equations, 260 (2016), 8530–8549. https://doi.org/10.1016/j.jde.2016.02.030 doi: 10.1016/j.jde.2016.02.030
    [6] X. L. Wu, Z. Zhang, On the blow-up of solutions for the Fornberg-Whitham equation, Nonlinear Anal., 44 (2018), 573–588. https://doi.org/10.1016/j.nonrwa.2018.06.004 doi: 10.1016/j.nonrwa.2018.06.004
    [7] G. Hörmann, Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation, J. Differ. Equations, 265 (2018), 2825–2841. https://doi.org/10.1016/j.jde.2018.04.056 doi: 10.1016/j.jde.2018.04.056
    [8] S. Yang, Wave breaking phenomena for the Fornberg-Whitham equation, J. Dyn. Difer. Equat., 33 (2020), 1753–1758. https://doi.org/10.1007/s10884-020-09866-z doi: 10.1007/s10884-020-09866-z
    [9] A. Degasperis, M. Procesi, Asymptotic integrability, In: A. Degasperis, G. Gaeta, Symmetry and perturbation theory, International Workshop on Symmetry and Perturbation Theory, Rome, 1999, 23–37.
    [10] O. G. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10–14. https://doi.org/10.2991/jnmp.2005.12.1.2 doi: 10.2991/jnmp.2005.12.1.2
    [11] A. Degasperis, D. D. Holm, A. H. W. Hone, A new integral equation with peakon solutions, Theor. Math. Phys., 133 (2002), 1463–1474. https://doi.org/10.1023/A:1021186408422 doi: 10.1023/A:1021186408422
    [12] J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87–177. https://doi.org/10.1512/iumj.2007.56.3040 doi: 10.1512/iumj.2007.56.3040
    [13] H. Lundmark, J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Prob., 19 (2003), 1241. https://doi.org/10.1088/0266-5611/19/6/001 doi: 10.1088/0266-5611/19/6/001
    [14] V. O. Vakhnenko, E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Soliton. Fract., 20 (2004), 1059–1073. https://doi.org/10.1016/j.chaos.2003.09.043 doi: 10.1016/j.chaos.2003.09.043
    [15] J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457–485. https://doi.org/10.1016/j.jfa.2006.03.022 doi: 10.1016/j.jfa.2006.03.022
    [16] Z. Yin, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129–139. https://doi.org/10.1016/S0022-247X(03)00250-6 doi: 10.1016/S0022-247X(03)00250-6
    [17] Y. Liu, Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267 (2006), 801–820. https://doi.org/10.1007/s00220-006-0082-5 doi: 10.1007/s00220-006-0082-5
    [18] Z. Lin, Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Commun. Pure Appl. Math., 62 (2009), 125–146. https://doi.org/10.1002/cpa.20239 doi: 10.1002/cpa.20239
    [19] R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differ. Equations, 192 (2003), 429–444. https://doi.org/10.1016/S0022-0396(03)00096-2 doi: 10.1016/S0022-0396(03)00096-2
    [20] A. Himonas, C. Holliman, On well-posedness of the Degasperis-Procesi equation, Discrete Cont. Dyn. Syst., 31 (2011), 469–488. https://doi.org/10.3934/dcds.2011.31.469 doi: 10.3934/dcds.2011.31.469
    [21] Y. Liu, Z. Yin, On the blow-up phenomena for the Degasperis-Procesi equation, Int. Math. Res. Notices, 2007 (2007), 1–22. https://doi.org/10.1093/imrn/rnm117 doi: 10.1093/imrn/rnm117
    [22] Y. Liu, Z. Yin, Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces, J. Differ. Equations, 261 (2016), 6125–6143. https://doi.org/10.1016/j.jde.2016.08.031 doi: 10.1016/j.jde.2016.08.031
    [23] H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., 17 (2007), 169–198. https://doi.org/10.1007/s00332-006-0803-3 doi: 10.1007/s00332-006-0803-3
    [24] Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182–194. https://doi.org/10.1016/j.jfa.2003.07.010 doi: 10.1016/j.jfa.2003.07.010
    [25] Z. Yin, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189–1210. https://doi.org/10.1512/iumj.2004.53.2479 doi: 10.1512/iumj.2004.53.2479
    [26] W. Y. Mao, Q. F. Zhang, D. H. Xu, Y. H. Xu, Double reduction order method based conservative compact schemes for the Rosenau equation, Appl. Numer. Math., 197 (2024), 15–45. https://doi.org/10.1016/j.apnum.2023.11.001 doi: 10.1016/j.apnum.2023.11.001
    [27] M. R. Pervin, H. O. Roshid, A. Abdeljabbare, P. Dey, S. S. Shanta, Dynamical structures of wave front to the fractional generalized equal width-Burgers model via two analytic schemes: effects of parameters and fractionality, Nonlinear Eng., 12 (2023), 20220328. https://doi.org/10.1515/nleng-2022-0328 doi: 10.1515/nleng-2022-0328
    [28] M. S. Ullah, Interaction solution to the (3+1)-D negative-order KDV first structure, Partial Differ. Equ. Appl. Math., 8 (2023), 100566. https://doi.org/10.1016/j.padiff.2023.100566 doi: 10.1016/j.padiff.2023.100566
    [29] M. S. Ullah, D. Baleanu, M. Z. Ali, H. O. Roshid, Novel dynamics of the Zoomeron model via different analytical methods, Chaos Soliton. Fract., 174 (2023), 113856. https://doi.org/10.1016/j.chaos.2023.113856 doi: 10.1016/j.chaos.2023.113856
    [30] M. S. Ullah, M. Z. Ali, H. O. Roshid, M. F. Hoque, Collision phenomena among lump, periodic and stripe soliton solutions to (2+1)-dimensional Benjamin-Bona-Mahony-Burgers model, Eur. Phys. J. Plus, 136 (2021), 370. https://doi.org/10.1140/epjp/s13360-021-01343-w doi: 10.1140/epjp/s13360-021-01343-w
    [31] M. S. Ullah, H. O. Roshid, M. Z. Ali, H. Rezazadeh, Kink and breather waves with without singular solutions to the Zoomeron model, Results Phys., 49 (2023), 106535. https://doi.org/10.1016/j.rinp.2023.106535 doi: 10.1016/j.rinp.2023.106535
    [32] H. U. Jan, M. Uddin, T. Abdeljawad, M. Zamir, Numerical study of high order nonlinear dispersive PDEs using different RBF approaches, Appl. Numer. Math., 182 (2022), 356–369. https://doi.org/10.1016/j.apnum.2022.08.007 doi: 10.1016/j.apnum.2022.08.007
    [33] G. Gui, Y. Liu, On the Cauchy problem for the Degasperis-Procesi equation, Quart. Appl. Math., 69 (2011), 445–464. https://doi.org/10.1090/s0033-569x-2011-01216-5 doi: 10.1090/s0033-569x-2011-01216-5
    [34] J. Holmes, R. C. Thompson, Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differ. Equations, 263 (2017), 4355–4381. https://doi.org/10.1016/j.jde.2017.05.019 doi: 10.1016/j.jde.2017.05.019
    [35] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(862) PDF downloads(65) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog