Research article

Approximate solution of nonlinear fuzzy Fredholm integral equations using bivariate Bernstein polynomials with error estimation

  • Received: 08 October 2021 Revised: 23 December 2021 Accepted: 03 January 2022 Published: 10 February 2022
  • MSC : 03E72, 46S40

  • This paper is concerned with obtaining approximate solutions of fuzzy Fredholm integral equations using Picard iteration method and bivariate Bernstein polynomials. We first present the way to approximate the value of the multiple integral of any fuzzy-valued function based on the two dimensional Bernstein polynomials. Then, it is used to construct the numerical iterative method for finding the approximate solutions of two dimensional fuzzy integral equations. Also, the error analysis and numerical stability of the method are established for such fuzzy integral equations considered here in terms of supplementary Lipschitz condition. Finally, some numerical examples are considered to demonstrate the accuracy and the convergence of the method.

    Citation: Sima Karamseraji, Shokrollah Ziari, Reza Ezzati. Approximate solution of nonlinear fuzzy Fredholm integral equations using bivariate Bernstein polynomials with error estimation[J]. AIMS Mathematics, 2022, 7(4): 7234-7256. doi: 10.3934/math.2022404

    Related Papers:

  • This paper is concerned with obtaining approximate solutions of fuzzy Fredholm integral equations using Picard iteration method and bivariate Bernstein polynomials. We first present the way to approximate the value of the multiple integral of any fuzzy-valued function based on the two dimensional Bernstein polynomials. Then, it is used to construct the numerical iterative method for finding the approximate solutions of two dimensional fuzzy integral equations. Also, the error analysis and numerical stability of the method are established for such fuzzy integral equations considered here in terms of supplementary Lipschitz condition. Finally, some numerical examples are considered to demonstrate the accuracy and the convergence of the method.



    加载中


    [1] S. Abbasbandy, T. Allahviranloo, The Adomian decomposition method applied to the fuzzy system of Fredholm integral equations of the second kind, Int. J. Uncertain. Fuzz., 14 (2006), 101–110. https://doi.org/10.1142/S0218488506003868 doi: 10.1142/S0218488506003868
    [2] S. Abbasbandy, E. Babolian, M. Alavi, Numerical method for solving linear Fredholm fuzzy integral equations of the second kind, Chaos Soliton. Fract., 31 (2007), 138–146. https://doi.org/10.1016/j.chaos.2005.09.036 doi: 10.1016/j.chaos.2005.09.036
    [3] K. Akhavan Zakeri, S. Ziari, M. A. Fariborzi Araghi, I. Perfilieva, Efficient numerical solution to a bivariate nonlinear fuzzy fredholm integral equation, IEEE T. Fuzzy Syst., 2019. https://doi.org/10.1109/TFUZZ.2019.2957100
    [4] G. A. Anastassiou, Fuzzy Mathematics: Approximation Theory. Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-11220-1
    [5] H. Attari, Y. Yazdani, A computational method for for fuzzy Volterra-Fredholm integral equations, Fuzzy Inf. Eng., 2 (2011), 147–156. https://doi.org/10.1007/s12543-011-0073-x doi: 10.1007/s12543-011-0073-x
    [6] E. Babolian, H. Sadeghi Goghary, S. Abbasbandy, Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Appl. Math. Comput., 161 (2005), 733–744. https://doi.org/10.1016/j.amc.2003.12.071 doi: 10.1016/j.amc.2003.12.071
    [7] M. Baghmisheh, R. Ezzati, Numerical solution of nonlinear fuzzy Fredholm integral equations of the second kind using hybrid of block-pulse functions and Taylor series, Adv. Differ. Equ-Ny, 51 (2015).
    [8] M. Baghmisheh, R. Ezzati, Error estimation and numerical solution of nonlinear fuzzy Fredholm integral equations of the second kind using triangular functions, J. Intell. Fuzzy Syst., 30 (2016), 639–649. https://doi.org/10.3233/IFS-151783 doi: 10.3233/IFS-151783
    [9] K. Balachandran, P. Prakash, Existence of solutions of nonlinear fuzzy Volterra-Fredholm integral equations, Indian J. Pure Ap. Mat., 33 (2002), 329–343.
    [10] K. Balachandran, K. Kanagarajan, Existence of solutions of general nonlinear fuzzy Volterra-Fredholm integral equations, J. Appl. Math. Stochastic Anal., 3 (2005), 333–343. https://doi.org/10.1155/JAMSA.2005.333 doi: 10.1155/JAMSA.2005.333
    [11] B. Bede, S. G. Gal, Quadrature rules for integrals of fuzzy-number-valued functions, Fuzzy Set. Syst., 145 (2004), 359–380. https://doi.org/10.1016/S0165-0114(03)00182-9 doi: 10.1016/S0165-0114(03)00182-9
    [12] A. M. Bica, Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations, Inf. Sci., 178 (2008), 1279–1292. https://doi.org/10.1016/j.ins.2007.10.021 doi: 10.1016/j.ins.2007.10.021
    [13] A. M. Bica, C. Popescu, Approximating the solution of nonlinear Hammerstein fuzzy integral equations, Fuzzy Set. Syst., 245 (2014), 1–17. https://doi.org/10.1016/j.fss.2013.08.005 doi: 10.1016/j.fss.2013.08.005
    [14] A. M. Bica, Algebraic structures for fuzzy numbers from categorial point of view, Soft Comput., 11 (2007), 1099–1105. https://doi.org/10.1007/s00500-007-0167-x doi: 10.1007/s00500-007-0167-x
    [15] A. M. Bica, S. Ziari, Iterative numerical method for solving fuzzy Volterra linear integral equations in two dimensions, Soft Comput. 21 (2017), 1097–1108. https://doi.org/10.1007/s00500-016-2085-2
    [16] A. M. Bica, C. Popescu, Fuzzy trapezoidal cubature rule and application to two-dimensional fuzzy Fredholm integral equations, Soft Comput., 21 (2017), 1229–1243.
    [17] A. M. Bica, S. Ziari, Open fuzzy cubature rule with application to nonlinear fuzzy Volterra integral equations in two dimensions, Fuzzy Set. Syst., 358 (2019), 108–131. https://doi.org/10.1016/j.fss.2018.04.010 doi: 10.1016/j.fss.2018.04.010
    [18] Y. Chalco-Cano, H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos Soliton. Fract., 38 (2008), 112–119. https://doi.org/10.1016/j.chaos.2006.10.043 doi: 10.1016/j.chaos.2006.10.043
    [19] W. Congxin, W. Cong, The supremum and infimum of the set of fuzzy numbers and its applications, J. Math. Anal. Appl., 210 (1997), 499–511. https://doi.org/10.1006/jmaa.1997.5406 doi: 10.1006/jmaa.1997.5406
    [20] D. Dubois, H. Prade, Fuzzy numbers: An overview. In: Analysis of Fuzzy Information, CRC Press, BocaRaton, 1 (1987), 3–39.
    [21] E. H. Dohaa, A. H. Bhrawyb, M. A. Saker, Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations, Appl. Math. Lett., 24 (2011), 559–565. https://doi.org/10.1016/j.aml.2010.11.013 doi: 10.1016/j.aml.2010.11.013
    [22] R. Ezzati, S. Ziari, Numerical solution and error estimation of fuzzy Fredholm integral equation using fuzzy Bernstein polynomials, Aust. J. Basic Appl. Sci., 5 (2011), 2072–2082.
    [23] R. Ezzati, S. Ziari, Numerical solution of nonlinear fuzzy Fredholm integral equations using iterative method, Appl. Math. Comput., 225 (2013), 33–42. https://doi.org/10.1016/j.amc.2013.09.020 doi: 10.1016/j.amc.2013.09.020
    [24] R. Ezzati, S. Ziari, Numerical solution of two-dimensional fuzzy Fredholm integral equations of the second kind using fuzzy bivariate Bernstein polynomials, Int. J. Fuzzy Syst., 15 (2013), 84–89. https://doi.org/10.1017/S1466046612000579 doi: 10.1017/S1466046612000579
    [25] J. X. Fang, Q. Y. Xue, Some properties of the space fuzzy-valued continuous functions on a compact set, Fuzzy Set. Syst., 160 (2009), 1620–1631. https://doi.org/10.1016/j.fss.2008.07.014 doi: 10.1016/j.fss.2008.07.014
    [26] M. A. Fariborzi Araghi, N. Parandin, Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle, Soft Comput., 15 (2011), 2449–2456. https://doi.org/10.1007/s00500-011-0706-3 doi: 10.1007/s00500-011-0706-3
    [27] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Set. Syst., 106 (1999), 35–48. https://doi.org/10.1016/S0165-0114(98)00355-8 doi: 10.1016/S0165-0114(98)00355-8
    [28] M. Friedman, M. Ma, A. Kandel, Solutions to fuzzy integral equations with arbitrary kernels, Int. J. Approximating Reasoning, 20 (1999), 249–262. https://doi.org/10.1016/S0888-613X(99)00005-5 doi: 10.1016/S0888-613X(99)00005-5
    [29] S. G. Gal, Approximation theory in fuzzy setting, In: Anastassiou, GA (ed.) Handbook of Analytic-Computational Methods in Applied Mathematics, Chapman & Hall/CRC Press, Boca Raton, 2000,617–666.
    [30] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6
    [31] Z. Gong, C. Wu, Bounded variation absolute continuity and absolute integrability for fuzzy-number-valued functions, Fuzzy Set. Syst., 129 (2002), 83–94. https://doi.org/10.1016/S0165-0114(01)00132-4 doi: 10.1016/S0165-0114(01)00132-4
    [32] O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7
    [33] S. Karamseraji, R. Ezzati, S. Ziari, Fuzzy bivariate triangular functions with application to nonlinear fuzzy Fredholm–Volterra integral equations in two dimensions, Soft Comput., 24 (2020), 9091–9103. https://doi.org/10.1007/s00500-019-04439-9 doi: 10.1007/s00500-019-04439-9
    [34] A. Molabahrami, A. Shidfar, A. Ghyasi, An analytical method for solving linear Fredholm fuzzy integral equations of the second kind, Comput. Math. Appl., 61 (2011), 2754–2761. https://doi.org/10.1016/j.camwa.2011.03.034 doi: 10.1016/j.camwa.2011.03.034
    [35] N. Parandin, M. A. Fariborzi Araghi, The numerical solution of linear fuzzy Fredholm integral equations of the second kind by using finite and divided differences methods, Soft Comput., 15 (2010), 729–741. https://doi.org/10.1007/s00500-010-0606-y doi: 10.1007/s00500-010-0606-y
    [36] J. Y. Park, H. K. Han, Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations, Fuzzy Set. Syst., 105 (1999), 481–488. https://doi.org/10.1016/S0165-0114(97)00238-8 doi: 10.1016/S0165-0114(97)00238-8
    [37] J. Y. Park, J. U. Jeong, On the existence and uniqueness of solutions of fuzzy Volttera-Fredholm integral equations, Fuzzy Set. Syst., 115 (2000), 425–431. https://doi.org/10.1016/S0165-0114(98)00341-8 doi: 10.1016/S0165-0114(98)00341-8
    [38] J. Y. Park, S. Y. Lee, J. U. Jeong, The approximate solution of fuzzy functional integral equations, Fuzzy Set. Syst., 110 (2000), 79–90. https://doi.org/10.1016/S0165-0114(98)00008-6 doi: 10.1016/S0165-0114(98)00008-6
    [39] A. Rivaz, F. Yousefi, H. Salehinejad, Using block pulse functions for solving two-dimensional fuzzy Fredholm integral equations of the second kind, Int. J. Appl. Math., 25 (2012), 571–582. https://doi.org/10.1590/S0103-51502012000300013 doi: 10.1590/S0103-51502012000300013
    [40] S. M. Sadatrasoul, R. Ezzati, Quadrature rules and iterative method for numerical solution of two-dimensional fuzzy integral equations, Abstract Appl. Anal., 2014, https://doi.org/10.1155/2014/413570
    [41] S. M. Sadatrasoul, R. Ezzati, Iterative method for numerical solution of two-dimensional nonlinear fuzzy integral equations, Fuzzy Set. Syst., 280 (2015), 91–106. https://doi.org/10.1016/j.fss.2014.12.008 doi: 10.1016/j.fss.2014.12.008
    [42] S. M. Sadatrasoul, R. Ezzati, Numerical solution of two-dimensional nonlinear Hammerstein fuzzy integral equations based on optimal fuzzy quadrature formula, J. Comput. Appl. Math., 292 (2016), 430–446. https://doi.org/10.1016/j.cam.2015.07.023 doi: 10.1016/j.cam.2015.07.023
    [43] V. Samadpour Khalifeh Mahaleh, R. Ezzati, Numerical solution of linear fuzzy Fredholm integral equations of second kind using iterative method and midpoint quadrature formula, J. Int. Fuzzy Syst., 33 (2017), 1293 –1302. https://doi.org/10.3233/JIFS-162044 doi: 10.3233/JIFS-162044
    [44] P. V. Subrahmanyam, S. K. Sudarsanam, A note on fuzzy Volterra integral equations, Fuzzy Set. Syst., 81 (1996), 237–240. https://doi.org/10.1016/0165-0114(95)00180-8 doi: 10.1016/0165-0114(95)00180-8
    [45] C. Wu, S. Song, H. Wang, On the basic solutions to the generalized fuzzy integral equation, Fuzzy Set. Syst., (1998), 255–260.
    [46] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Set. Syst., 102 (2001), 523–532. https://doi.org/10.1016/S0165-0114(99)00057-3 doi: 10.1016/S0165-0114(99)00057-3
    [47] H. Yang, Z. Gong, Ill-posedness for fuzzy Fredholm integral equations of the first kind and regularization methods, Fuzzy Set. Syst., 358 (2019), 132–149. https://doi.org/10.1016/j.fss.2018.05.010 doi: 10.1016/j.fss.2018.05.010
    [48] S. Ziari, R. Ezzati, S. Abbasbandy, Numerical solution of linear fuzzy Fredholm integral equations of the second kind using fuzzy Haar wavelet. In: Advances in Computational Intelligence. Communications in Computer and Information Science, 299 (2012), 79–89.
    [49] S. Ziari, A. M. Bica, New error estimate in the iterative numerical method for nonlinear fuzzy Hammerstein-Fredholm integral equations, Fuzzy Set. Syst., 295 (2016), 136–152. https://doi.org/10.1016/j.fss.2015.09.021 doi: 10.1016/j.fss.2015.09.021
    [50] S. Ziari, R. Ezzati, S. Abbasbandy, Fuzzy block-pulse functions and its application to solve linear fuzzy Fredholm integral equations of the second kind, In: Advances in Computational Intelligence, Communications in Computer and Information Science, (2016) 821–832.
    [51] S. Ziari, Iterative method for solving two-dimensional nonlinear fuzzy integral equations using fuzzy bivariate block-pulse functions with error estimation, Iran J. Fuzzy Syst., 15 (2018), 55–76.
    [52] S. Ziari, Towards the accuracy of iterative numerical methods for fuzzy Hammerstein-Fredholm integral equations, Fuzzy Set. Syst., 375 (2019), 161–178. https://doi.org/10.1016/j.fss.2018.09.006 doi: 10.1016/j.fss.2018.09.006
    [53] S. Ziari, I. Perfilieva, S. Abbasbandy, Block-pulse functions in the method of successive approximations for nonlinear fuzzy Fredholm integral equations, Differ. Equ. Dyn. Syst., (2019), https://doi.org/10.1007/s12591-019-00482-y.
    [54] S. Ziari, A. M. Bica, An iterative numerical method to solve nonlinear fuzzy Volterra-Hammerstein integral equations, J. Intel. Fuzzy Syst., 37 (2019), 6717–6729. https://doi.org/10.3233/JIFS-190149 doi: 10.3233/JIFS-190149
    [55] S. Ziari, A. M. Bica, R. Ezzati, Iterative fuzzy Bernstein polynomials method for nonlinear fuzzy Volterra integral equations, Comp. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-01361-x.
    [56] S. Ziari, T. Allahviranloo, W. Pedrycz, An improved numerical iterative method for solving nonlinear fuzzy Fredholm integral equations via Picards method and generalized quadrature rule, Comp. Appl. Math., 40 (2021). https://doi.org/10.1007/s40314-021-01616-1.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1548) PDF downloads(73) Cited by(1)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog