This paper discussed the numerical evaluation of highly oscillatory integrals involving logarithmic and algebraic singularities. For an analytic function in a sufficiently large region containing $ [a, b] $, the integral was transformed into the sum of two line integrals where the integrands did not oscillate and decay exponentially. Thus, to approximate the line integrals, generalized Gauss-Laguerre quadrature and logarithmic Gauss-Laguerre quadrature were applied. The error bound and numerical results demonstrated that the proposed method efficiently obtained high-precision results even for high oscillations.
Citation: SAIRA, Wenxiu Ma, Suliman Khan. An efficient numerical method for highly oscillatory logarithmic-algebraic singular integrals[J]. AIMS Mathematics, 2025, 10(3): 4899-4914. doi: 10.3934/math.2025224
This paper discussed the numerical evaluation of highly oscillatory integrals involving logarithmic and algebraic singularities. For an analytic function in a sufficiently large region containing $ [a, b] $, the integral was transformed into the sum of two line integrals where the integrands did not oscillate and decay exponentially. Thus, to approximate the line integrals, generalized Gauss-Laguerre quadrature and logarithmic Gauss-Laguerre quadrature were applied. The error bound and numerical results demonstrated that the proposed method efficiently obtained high-precision results even for high oscillations.
[1] | D. L. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-30351-8 |
[2] |
W. X. Ma, Y. Huang, F. Wang, Inverse scattering transforms for non-local reverse-space matrix non-linear Schrödinger equations, Eur. J. Appl. Math., 33 (2022), 1062–1082. http://dx.doi.org/10.1017/S0956792521000334 doi: 10.1017/S0956792521000334
![]() |
[3] | J. C. Nédélec, Acoustic and electromagnetic equations: integral representations for harmonic problems, 1 Ed., New York: Springer, 2001. https://doi.org/10.1007/978-1-4757-4393-7 |
[4] | E. R. Pike, P. C. Sabatier, Scattering, two-volume set: scattering and inverse scattering in pure and applied science, 1 Ed., New York: Academic Press, 2001. |
[5] | G. Arfken, H. Weber, F. Harris, Mathematical methods for physicists, San Diego: Academic Press, 2012. https://doi.org/10.1016/C2009-0-30629-7 |
[6] |
W. X. Ma, Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations, J. Geom. Phys., 157 (2020), 103845. https://doi.org/10.1016/j.geomphys.2020.103845 doi: 10.1016/j.geomphys.2020.103845
![]() |
[7] |
W. X. Ma, Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction, Math. Method. Appl. Sci., 42 (2019), 1099–1113. https://doi.org/10.1002/mma.5416 doi: 10.1002/mma.5416
![]() |
[8] |
L. Cheng, Y. Zhang, W. X. Ma, An extended $(2+1)$-dimensional modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation: Lax pair and Darboux transformation, Commun. Theor. Phys., 77 (2025), 035002. https://doi.org/10.1088/1572-9494/ad84d3 doi: 10.1088/1572-9494/ad84d3
![]() |
[9] |
S. Xiang, Efficient Filon-type methods for $\int_{a}^{b}f(x)e^{\iota\omega g(x)}dx$, Numer. Math., 105 (2007), 633–658. https://doi.org/10.1007/s00211-006-0051-0 doi: 10.1007/s00211-006-0051-0
![]() |
[10] |
E. A. Flinn, A modification of Filon's method of numerical integration, J. ACM, 7 (1960), 181–184. https://doi.org/10.1145/321021.32102 doi: 10.1145/321021.32102
![]() |
[11] |
S. Olver, Moment-free numerical integration of highly oscillatory functions, IMA J. Numer. Anal., 26 (2006), 213–227. https://doi.org/10.1093/imanum/dri040 doi: 10.1093/imanum/dri040
![]() |
[12] |
S. Khan, S. Zaman, A. Arama, M. Arshad, On the evaluation of highly oscillatory integrals with high frequency, Eng. Anal. Bound. Elem., 121 (2020), 116–125. https://doi.org/10.1016/j.enganabound.2020.09.010 doi: 10.1016/j.enganabound.2020.09.010
![]() |
[13] |
C. W. Clenshaw, A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math., 2 (1960), 197–205. https://doi.org/10.1007/BF01386223 doi: 10.1007/BF01386223
![]() |
[14] |
H. Kang, S. Xiang, Efficient integration for a class of highly oscillatory integrals, Appl. Math. Comput., 218 (2011), 3553–3564. https://doi.org/10.1016/j.amc.2011.08.101 doi: 10.1016/j.amc.2011.08.101
![]() |
[15] |
D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal., 44 (2006), 1026–1048. https://doi.org/10.1137/050636814 doi: 10.1137/050636814
![]() |
[16] |
H. Kang, R. Wang, M. Zhang, S. Xiang, Efficient and accurate quadrature methods of Fourier integrals with a special oscillator and weak singularities, Appl. Math. Comput., 440 (2023), 127492. https://doi.org/10.1016/j.amc.2022.127492 doi: 10.1016/j.amc.2022.127492
![]() |
[17] |
C. Fang, Efficient methods for highly oscillatory integrals with weak and Cauchy singularities, Int. J. Comput. Math., 93 (2016), 1597–610. https://doi.org/10.1080/00207160.2015.1067312 doi: 10.1080/00207160.2015.1067312
![]() |
[18] |
S. Khan, S. Zaman, Siraj-ul-islam, Approximation of Cauchy-type singular integrals with high frequency Fourier kernel, Eng. Anal. Bound. Elem., 130 (2021), 209–219. https://doi.org/10.1016/j.enganabound.2021.05.017 doi: 10.1016/j.enganabound.2021.05.017
![]() |
[19] |
H. Kang, C. Ling, Computation of integrals with oscillatory singular factors of algebraic and logarithmic type, J. Comput. Appl. Math., 285 (2015), 72–85. https://doi.org/10.1016/j.cam.2015.02.006 doi: 10.1016/j.cam.2015.02.006
![]() |
[20] |
A. Arama, S. Xiang, S. Khan, On the convergence rate of Clenshaw-Curtis quadrature for Jacobi weight applied to functions with algebraic endpoint singularities, Symmetry, 12 (2020), 716. https://doi.org/10.3390/sym12050716 doi: 10.3390/sym12050716
![]() |
[21] |
G. He, S. Xiang, An improved algorithm for the evaluation of Cauchy principal value integrals of oscillatory functions and its application, J. Comput. Appl. Math., 280 (2015), 1–13. https://doi.org/10.1016/j.cam.2014.11.023 doi: 10.1016/j.cam.2014.11.023
![]() |
[22] |
A. Hascelik, Efficient computation of highly oscillatory Fourier-type integrals with monomial phase functions and Jacobi-type singularities, Appl. Numer. Math., 150 (2020), 303–312. https://doi.org/10.1016/j.apnum.2019.10.007 doi: 10.1016/j.apnum.2019.10.007
![]() |
[23] |
R. Chen, Fast computation of a class of highly oscillatory integrals, Appl. Math. Comput., 227 (2014), 494–501. https://doi.org/10.1016/j.amc.2013.11.068 doi: 10.1016/j.amc.2013.11.068
![]() |
[24] |
D. K. Kurtoǧlu, A. I. Hasçelik, G. V. Milovanović, A method for efficient computation of integrals with oscillatory and singular integrand, Numer. Algor., 85 (2020), 1155–1173. https://doi.org/10.1007/s11075-019-00859-8 doi: 10.1007/s11075-019-00859-8
![]() |
[25] |
J. Gao, Numerical analysis of the spectrum for the highly oscillatory integral equation with weak singularity, J. Comput. Appl. Math., 403 (2022), 113820. https://doi.org/10.1016/j.cam.2021.113820 doi: 10.1016/j.cam.2021.113820
![]() |
[26] |
Y. Wang, S. Xiang, Fast and stable augmented Levin methods for highly oscillatory and singular integrals, Math. Comp., 91 (2022), 1893–1923. https://doi.org/10.1090/mcom/3725 doi: 10.1090/mcom/3725
![]() |
[27] | S. Lang, Complex analysis, 4 Eds., New York: Springer, 1998. https://doi.org/10.1007/978-1-4757-3083-8 |
[28] |
W. Gautschi, Gauss quadrature routines for two classes of logarithmic weight functions, Numer. Algor., 55 (2010), 265–277. https://doi.org/10.1007/s11075-010-9366-0 doi: 10.1007/s11075-010-9366-0
![]() |
[29] | P. J. Davis, P. Rabinowitz, Methods of numerical integration, New York: Academic Press, 1984. https://doi.org/10.1016/C2013-0-10566-1 |
[30] |
J. S. Ball, N. H. Beebe, Efficient Gauss-related quadrature for two classes of logarithmic weight functions, ACM Trans. Math. Softw., 33 (2007), 19. https://doi.org/10.1145/1268769.1268773 doi: 10.1145/1268769.1268773
![]() |