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1. Introduction

Many scientific and engineering phenomena can be studied and modeled using integral equations.
They provide a versatile framework for modeling complex systems, solving boundary value problems,
analyzing signals, studying fluid dynamics and solid mechanics, addressing inverse problems, and
developing numerical methods [1-8]. Such integral equations can also possess integrals involving
logarithmic or algebraic singularities.
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This paper discusses the numerical computation of the following highly oscillatory integral
involving both algebraic and logarithmic singularities

[In(x = @)In(b = OF 0™ | = O o1, (L.1)

b
e R e e e

where f(x) is a non-oscillatory, real-valued function on [a, b], w > 1 is the frequency, —c0 < a < b <
oo, a, < 1,y < 1,and a < 7, < b. Nevertheless, these integrals play a significant role in quantum
mechanics, wave propagation, fluid dynamics, and electromagnetic theory, where they are used to
formulate mixed boundary value problems. For @ = 8 = s = y; = 0, there are sufficient methods such
as the Filon method, Clenshaw-Curtis method, asymptotic method, Levin method, steepest descent
method, and meshless method to solve this integral [9-12]. In addition, for v, = s = 0, a vast number
of numerical methods have been proposed, some of which are the Filon method, modified Clenshaw-
Curtis method, Levin method, and steepest descent method [13—15].

In [16], Kang et al. presented two quadrature methods to solve the singularly oscillatory integral
for y, = s = 0 over the interval [0, b]. A two-point Taylor polynomial was employed to perform the
two-point Taylor interpolation. Their approach involves utilizing the Taylor polynomial of the function
f at x = 0, and converting the integral into two integrals based on the additivity of the integration
interval. By using the generalized Gaussian-Laguerre quadrature rule and the Cauchy residue theorem,
one integral can be computed efficiently. Some special functions can be used to calculate the other
integrals. In the paper [17], the author presented fast and accurate numerical schemes for evaluating
highly oscillatory integrals with weak and Cauchy singularities. The authors in [18] implemented the
meshless collocation method based on the Levin approach to treat the Cauchy-type and logarithmic
singularities. The proposed algorithms compute the integrals accurately for large-scale data points and
high frequency.

In [19], the high order Clenshaw-Curtis-Filon methods based on special Hermite interpolation
polynomial Py,,,, r € {0, 1,2} in Clenshaw-Curtis points N + 1 are constructed for calculating many
classes of oscillatory integrals with algebraic or logarithmic singularities. Some stable recurrence
relations are further used to calculate the obtained modified moments accurately and efficiently. The
accuracy of the methods is claimed to improve for fixed N when w or r increases. As for some classical
quadrature methods, such as Gaussian quadrature or any quadrature method that uses polynomial
interpolation, a substantial number of quadrature points is required. In the case of large w, the
numerical evaluation by such quadratures can be very challenging. In [20], the authors implemented
the Clenshaw-Curtis quadrature convergence rate for Jacobi weights given for functions with algebraic
endpoint singularities using the aliasing asymptotics on the coeflicients of the Chebyshev expansions.
For this type of function, the optimal error bound is obtained based on a newly designed symmetric
Jacobi weight. In this instance, the Clenshaw-Curtis quadrature is exponentially convergent for a newly
constructed Jacobi weight. Using few numerical examples, the theoretical results are verified.

However, in [21] the authors implemented an interpolatory quadrature rule to compute the Cauchy-
type and logarithmic singularities. In [22], the author presented a method for fast evaluation of
highly oscillatory Fourier-type integrals with Jacobi-type singularities by the Gauss-Laguerre rule.
The author asserts that these integrals can be computed stably and efficiently with a moderate to large
frequency, and this claim has been verified through a few numerical experiments. Moreover, Chen [23]
has computed (1.1), where s = 0. The author provided a numerical method based on the steepest
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descent method for an analytic function. The general Gauss-Laguerre quadrature rule is implemented
to compute the line integrals containing non-oscillatory integrands. To prove the validity of the given
convergence rate of the problem, several numerical examples are also provided. Kurtoglu et al. [24]
presented a problem for y, = 0, which was solved by the steepest descent method. This method consists
of three-term recursion coeflicients for orthogonal polynomials w.r.t Gautschi’s weight functions and
appropriate Gauss quadrature rules.

One spectra computation method for the highly oscillatory integral equation with an algebraic and
logarithmic singularity is proposed by Gao [25]. In this work, the integral equations are converted
into algebraic eigenvalue problems using the finite section method. This conversion leads to an infinite
coefficient matrix whose entries are bivariate highly oscillatory singular integrals. By simplifying the
double integral, they get an explicit expression. An augmented Levin method is presented in [26] for
the computation of oscillatory integrals with stationary points and an algebraically or logarithmically
singular kernel. In conjunction with the truncated singular value decomposition, sparse and fast
spectral methods are applied to convert the original Levin ordinary differential equation(ODE) into
an augmented ODE system.

Considering the wide range of applications of these types of integrals, it is of great interest to
develop an algorithm for computing these integrals numerically that is both fast and accurate. The
existing numerical methods will not be able to solve integrals of (1.1) type due to the existence of
logarithmic and algebraic singularities. We are primarily concerned with providing a fast algorithm for
the efficient computation of these integrals. Hence, this paper provides a reliable numerical method for
solving such integrals where y;, # 0 and s = 1. Based on analytic continuation, the proposed method
consists of converting highly oscillatory integrals into the problem of integrating a sum of two line
integrals which contain the integrand that does not oscillate and decays exponentially. In addition,
the N-point generalized Gauss-Laguerre quadrature rule and N-point logarithmic Gauss-Laguerre
quadrature rule are used to compute these line integrals. It is claimed that for larger values of w,
precise approximated results can be obtained for fixed N. Furthermore, the numerical examples provide
sufficient evidence that the proposed numerical method produces highly accurate results, regardless of
singularities or frequency.

This paper is organized as follows: Section 1 introduces the problem along with the literature review.
Section 2 explains the main methodology for computing the integral (1.1). An error bound is provided
in Section 3, while numerical examples are presented in Section 4 to demonstrate the authenticity of
the proposed method. Finally, the paper is concluded with a few remarks in Section 5.

2. Numerical scheme to compute the integral (1.1)

This section provides the numerical method depending on contour integration on the complex plane
for (1.1). In light of the significant results of Cauchy’s theorem from complex analysis, Cauchy’s
theorem states that the value of a line integral of an analytic function along a path between two points
in the complex plane does not depend on the exact path taken [27], and we prove the following theorem:

Theorem 1. Let’s consider a function f(z), which is an analytic in the upper half-strip of the complex
plane a < R(z) < b and 3(z) > 0, and satisfies that

fb |In(z + iR — a)||In(b — z — iR)||f(z + iR)|
o [@+iR—a)|(b—z—iRP| [T (z + iR — )%

dz < MR“Pe™R 0 < wy < w,
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for M and w, constants, then the integral (1.1) can be transformed as:

(= L)1 b [ b+ =) )b e
v 0 = (b+§-a) I, (b+ -
+ p i In(t—a) In(b—1y) f (3) &)
I[f(a, D= =l b Hxlzlf(u—f .i):j H.';:k.;fl(u—r./)y-f
(= iyl pgiob [Pt GO MC DI ENTT i
w 0 (b+L-a) [T}, (b+L—1p)% »

when 7y, <1,(k=1,---,n).

oo In(b— £ —a) In(L) f(a+L)r e
0 (b-LZ-aP [T]_ (a+L-1%
’When'ykzl,(kzl’,p)’_]ik,

dl+(£)1—(rei(ua

(2.1

oo In(b— L —a) In(L) f(a+ L)r e
0 (b-L-a)B [T}, (a+ L1 )%

dt,

In(z—a) In(b—2) f(R)e'*
(z=a)?(b—2)P [T}, (z—Ti)*
D is enclosed by the curves I'1, I, I3, T4, I'7, 255 T's ks 2o5-; ek as shown in the Figure 1. Following

the Cauchy’s theorem, we obtain

Proof. Since is analytic in the upper half-strip of complex plane D, where region

Hﬂmﬁlﬂ=j\ InGz=a)lnb - f@e™ | _ 6 (5

Fl+r2+r3+r4+r7+zzzl Fs,k+22’:1 Fﬁyk (Z - a)(l(b - Z)ﬁ HZ:I(Z - Tk)yk

P

r D M

Msn b

Figure 1. Integration path for integral (1.1).

For frl’ letz=>b+ip, p €[R,r], where R is a large number and r is a small number. Then, we get

f . fR In(b + ip — a) In(=ip) f(b + ip)e®+P) p
=1 . N n .
r » (b+ip—a)(=ipl [T (b + ip — T
p R In® + ip — a) In(=ip) f(b + ip)e~“P
= (- P . . , p
r (b+ip—a)*(pl 1= (b +ip—Ti)%
; . RiInb + L — a)In(—L) f(b + L)yt Pe!
_ (_i)lﬁelwa ( v ) In(=2)1( _ =) 5
o b+ 2 —a) [T (b + 2 — 1y

w

Similarly, for frg,z =a+ip,p € [R,r], we have

f _ fR In(ip) In(b — ip — a)f(a + ip)e@iP) .
I3 . (p)y*(b—ip—al [l (a+ip— 1)

R ln(i—’))ln(b - g) —a)f(a+ iu_t))t—ae—z
r b=t —aP [l at L -

I 1-a jiwa
= —(— e
(w)
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Now for fz,z = x + IR, we obtain

J.

B ‘ f” In(x + iR — a)In(b — x — iR) f (x + iR)e'*®) x'
1J. x+iR—a)*(b— x — iRP 1}, (x + iR — Ty )%
R In(x + iR — a) In(b — x — iR) f(x + iR)e™~

b
<e f

« |(x+iR—a)(b—x—iRPT]i_;(x + iR — 1))
< Me @ @R 50 as R — co.

For | ,z=a+ re' we achieve
4

i0

ire'?do

_ /2 In(re) In(b — a — ré) f(a + re)e’ e
fn Jo o (re® (b —a—re® [1i_(a+ re? — ;)%
f”/z | In(re®)|| In(b — a — re®)||f(a + re'?)| "

0 (b—a—-re®$ i (a+ref — 1)

-0, as r—>0,

< r1+a

following the same steps for I'7,I'; — 0,as r — 0.
The paths frﬁk(k =1,---,n),when z = 74 + re’?,0 < § < 7, become

f” In(ty+re?—a) ln(b—‘rk—reie)f(rk+rei")e’“(7k+’fi8> ireiadO
0 (ty+rel?—a)?(b—ty—rei?)p ]_[_I;;ll(rk+rei9—rj)7/ [Ty (atre®®=7)"7 ’
_ p i In(ty—a) In(b—1;) f (74) ek
=49- - - -, when =1;
frs,k Zk:l (tk—a)*(b—1x )P H,;-:i(’fk_'fj)yj “7:k+1(7k_7j)yj ’ Yk ’

0, when vy < 1.

Then, to calculate the I[ f(«, S, 1)], (2.2) leads to

1 B, D] = = - — - - - — , 2.3
[f(aﬁ )] ;‘fl:s,k \[1:1 \ff; jl; fﬂ fl:7 kzz;ﬁé,k ( )

which completes the proof. O

Using the Gautschi [28] analysis, the complex logarithmic functions are transformed as
i T, —i .

In(—)=(zi-In(w) -1+ - -1-In@®), In(—1t)=(-zi—-In(w)—-1+1)—-(—-1-1In()).
w 2 w 2

By substituting the above logarithmic functions into two line integrals I[f(8)] and I[ f(@)], we get

i _ o iep b foo In(b + £ —a)In(=2)f(b + Lyr e
I[f(ﬁ)] ( (1)) e o (b + ;_i —a) szl(b+ g P dt
- (—i)l—ﬁewb( f “Inb +  ~ a)-5i = Inw) = 1+ 0f(b + Dyfe
0 b+ E—ay [T, b+ & —tom
f “In(b + 2 —a)(t - 1 - In(0)f(b + g)rﬁe-fdt)
| .

b+ % —ay [}, (b+ L — g

dt (2.4)
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J ; ool b— 1 it it o —t
If(@] =(-)' e f nb— £ - fa+ Hree

0 ———a)BHk 1(a+ — Ty
:(i)l—ael’w( f"" In(b — £ — a).(g —In(w) — 1 + ;) fla+HHree
w 0 —l—t—a)ﬁnn (a+£—7-k)7k
~ f‘” In(b - £ —a)(t — 1 —1n@) f(a+ L) e _tdt).
0 ___a)ﬁnk 1(a+——Tk)”

dt (2.5)

Combining (2.4) and (2.5), (2.1) leads to the following:

_c w) 1-Biwb mln(b+f—a)(——z In(w)—1+8) f(b+ L)t Pe! di— oo1n(b+gfa)(¢—1—1n(z))f'(g;+g)fﬁe*' df
(b+ L —a)@ T4, (b+ 2L —11)% 0 b+ 2 —ay [0 (b+ L -7y

i Nl=aiwa (0= E-a)Fi-In(w)-1+0)f(a+ e oo In(b— £ —a)(t—1-In(r)) f(a+ L) e
+(w) € »[(; (b= =P Ty (a+ G -1k f() (b= =0 Ty (a+ -1 d

i In(tg—a) In(b—3) f (1) k)

+ . - when =1,(k=1,---,p)
ILf(@,B, =] =@ =P 1) I (i) vem b P (2.6)
o iNI=Biwb| [ b+ £ -a)(=Fi-In(@)-1+1)f(b+ L) Pe! di— oo In(b+L —a)(t—1-In(1) f(b+ L) Pe! d
¢ w) 0 (b+EL—a)r T4, (b+ L —7p)% 0 (b+ 2 —ay TI1_, (b+ L -7k

iyl-a,iwa 00ln(b—f—a)(zt 1n(w)—1+t)f(a+g)t"’e” 00 ln(b—f—a)(t 1-In(®) f(a+; itypa gt
+(w) ‘ ( 0 (b= E-aP [T (a+ -k j(; (b= —al [T (a+ =) di

when vy, <1,(k=1,---,n).

Consider {2, w2}¥_ and {r2,w}¥_ nodes and weights of the N-point generalized Gauss-Laguerre

m=1 m=1
quadrature rule w.r.t weight functions t#e~" and t%e~, respectively. Meanwhile, {zﬁ’l,wﬁ;l}ﬁzl and
{tﬁ’nl, anl}an denote the nodes and weights of the N-point logarithmic-Gauss-Laguerre quadrature rule
w.r.t weight functions (t— 1 —1In(f))r Pe™ and (t— 1 —In(f))t *e™", respectively. Thus, I[f(8)] and I[ f(a)]

can be computed as follows:

i
) ; . In(b + 2 — a)(-%i -1 —1+7 b+
ONLF(B)] = - (—i)l-ﬁelw”( Z N )( G z O
w m=1 (b + )a Hk 1(b + -2 = Tk)yk
tﬂ (2.7)
i ln(b +I ) f(b+ WB’Z)
ml(b+ )aHk 1(b+£—‘rk)7k "
_ ; (X n (b — a)(” ln(w) —1+ t")f(a + Iy
Oxlf(@)] =(—>1‘“e"““( “w,
N ! (2.8)
Z o a)f(a + i) o
(b P [T a+ e — gy
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Based on (2.7) and (2.8), the numerical method to compute (2.6) is defined as

i# i il
1P N ln(bw‘—f—a)(—fl—ln(w) ]+tfi)f(b+ m) ln(b+ —a)f(b+ -y [
—(—f)l /”e""b(Zm 1 7z WB _Z P [ﬁ/ M/an)
(b+*— ) [T (b+*—7'k)7k (b+ —-a)* [T} 1(b+ Z; —Ty)7k
ol

iNl—a i N ln(b———a)(ﬁt In(w)—1+1%, )f(a+—m) N ln(b———a)f(a+ ot ) 1
'F(ai)) a/elu)ll Zm:l it v W% _Zm 1 ” W;il
(b a)B HA 1(“+7_Tk) k

—7—a)ﬁ Hk 1(a+ m Tk)yk

inIn(ty—a) ln(b ) f(?'/\)e“"”k>

wheny, =1,(k=1,---,p);

+ -
OM f(a, B, )= k U (me=a)* (- TISZ] o=t )V TT gy (et )7 (2.9)
S ﬁ il il ’
1-f. In(b+m —a)(= T i~In(w)—1+5) f b+ M) In(b+ " —g) f(b+ o) ]
o PRSP S
w) m= (b+"ﬁ o 17 1(b+'——r i m= (b+”€l a),] . 1(b+£—7 ™ m
a,l
+(4)-agiva ZN_lln(b———a)(”z In(w)— 1+z")f(a+’ﬂ)wa _ZN 1 ln(b———a)f(a+ ':’ ) W;;,l’
w m= (b K_a)ﬁ HA 1(“+7_Tk)yk " "= —7—(1)/3 Hk 1(a+7—Tk)7k
when vy, <1,(k=1,---,n).
In case s = 0,
_(_i)l—ﬁeiwb N f(b+lgn) WB +(L’)1—a'eiwa N f(a"'%) we
“ (b+£—ll)” [T5- 1(b+£—7'k)7’< y ¢ =l (b_%_a)ﬁnzzl(m'%_ﬂ()yk "
inf(re ™) _ .
Onlf(a,B,0]= " k U (re=a)* =1 T12 (1) [Ty (Te=7)0 when y,=1,(k=1, 1);
i i# i
i \1-p,i N S+ i\l-a iwa|§N fla+=H) @
—(= L) e g W]+ (D) e R — W,
@ LA A B "= - - T (ot -
when vy, <1,(k=1,---,p),

and the results Qy[ f(a, 8,0)] to compute I[ f(a, 3, 0)] are consistent with those given in [23].

3. Error analysis

Theorem 2. Let f(z) be an analytic and non-oscillatory function in the upper half-strip of the complex
plane a < R(z) < b and 3(z) > 0, then the error of the numerical method (2.9) for integral (1.1) can
be defined as

I[f(@.B, D] = Qnlf(@,B, D]l = O(w M ™™, ) — co. (3.1

Proof. The error formula of the N-point generalized Gauss-Laguerre quadrature rule to the integral
f0+oo fx)x"e*dx,v > —1[29] is given as

_NI(N+v+1)

! FENQ), 0< ¢ < +oo. (3.2)
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Using (3.2) yields that

f"" In(b + £ —a)(-%i - In(w) — 1 + ) f(b + i—j)t’ﬂe”d
- - t
0 b+ 2 —a) [Tj= (b + 2 — 1)

ity a)(—ﬂi In(w) — 1 + &) f(b +

) z

m=1 (b+ )al_[k 1(b+——‘['k)7k
_INIP(N-B8+1) d2N In(b + 2 - a)(-%i—-In(w) - 1 + ) f(b+ 1)
_‘ @M)! dﬂ’v( b+ 2L —a) [T (0 + & — 7o )
=0(w™").

In(b + z WB

(3.3)

1={1

Similarly, by employing the N-point generalized Gauss-Laguerre quadrature rule for the integral
f0+m S0 (x =1 —log(x))x"e*dx,v > —1 [30], the error formula can be considered as

@N) .
Ey = (2N)‘f ), 0<<+o0. (3.4)

Using (3.4), we get

. . . Bl . Bl
foo In(b + £ — a)(t = 1 = @) f(b + Lyrfe’ ZN: In(h + ™ — @) f(b + ) i
i a n i . Bl m
0 b+ 5 —a) [T+ 5 -7 b+ B ) T (b +

| o d ( In(b + % -a)f(b+ %) ) (3.5)
QN APN\ (b + & — a)yr T (b + 2 — 7 )|,
=0(w™M).
A combination of (3.3) and (3.5), derives the result
L/ B)] = OnLf Bl = O(w™NP), (3.6)
and by using a similar method, we have
1ILf(a] = Onlf (@]l = O(w™V™). (3.7)
Thus, (3.6) and (3.7) leads to the following:
ULf(@.B. D] = Qylf(a.B, D] = O ), w — co. (3.8)
O

4. Numerical examples
This section provides numerical examples illustrating how the proposed method produces more
precise results. The values considered to be exact are calculated by taking sufficiently large values of

N for the quadrature rule. Moreover, in the following examples, absolute error and relative error are
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calculated as AEy = I[f(e, 8, )] = Qy[f(@. B, D]l and REy = |HEIOGERI respectively. It is
apparent in Tables 1 to 9 that the given approach produces higher accuracy’ results with a fixed N as the
frequency w increases or fixed w with N increasing. In Examples 3 to 5, Figures 2, 4, and 6 illustrate
the absolute error as well as Figures 3, 5, and 7 verify the error bound provided in Theorem 2. Table 8
shows that for N = 5, more accurate results can be achieved than those of the Clenshaw-Curtis-Filon
method given in [14] for s = ¥, = 0. Moreover, Table 9 compares the proposed method and the
high order Clenshaw-Curtis-Filon method [19] based on Hermite interpolation Py,,,, r € {0, 1,2}. All
numerical examples are tested in Matlab R2023a. The experiments were performed on a computer

with an Intel Core 17 1.99 GHz processor and 8 GB of RAM.

Example 1. Consider the following highly oscillatory logarithmic-algebraic singular integral:
' In(x — a) In(b — x) f(x)e'*
X
0o (x—a)3(b - x)*4(x - 0.5)
Tables 1 and 2 exhibit the absolute error for (4.1) computed by the proposed method, where f(x) =
sin(x) and e* are considered for y = 1 and 0.25. These tables show that higher accuracy results can

I[f(a.5, )] =

4.1)

be obtained for different values of N and w.

Table 1. The absolute error for the integral (4.1), where f(x) = e*.

vy=1

w N=1 N=2 N=3 N=4 N=5

16  2.5019%x107%2 1.9170x107%* 1.1352x10™%*  1.3324x107% 1.4109x107%
32 4.4982x1073  7.7524x107%  2.4969x107%  8.6891x10™%® 9.6777x1071°
64  5.1965x107% 1.9425x107% 2.1171x10%®  3.9205x107'° 9.1229x107'2
100 4.0881x107%* 5.9939x107%7 1.8939x10°"°  1.0857x107!'" 9.0151x10~'

v =0.25
16 4.4961x107%  1.5955x10~% 9.8546x107%  1.4312x10™" 1.0497x107"
32 1.4454x107%  1.0176x107%  1.06649x107%7 2.8443x107'° 2.3419x107'°
64  2.6104x107% 5.1483x107%7 2.0873x10™%°  1.6374x107!" 1.4127x10713
100 6.9661x107%  5.3669x10°% 7.8543x107!"  2.0247x10713 4.8027x107'6
Table 2. The absolute error for the integral (4.1), where f(x) = sin(x).
vy=1

w N=1 N=2 N=3 N=4 N=5

16  8.7971x107%  6.4991x10°% 3.2995x10% 3.8779x107% 4.0988x10~"

32 1.6240x107%  2.2830x107%  7.2783x107%7 2.5293x10™%® 2.8115x107'°

64  2.2926x107% 5.7784x107Y 6.1712x10™%° 1.1405x107'"" 2.6534x107'2

100 1.3814x107% 1.7704x107%7 5.5228x107'0 3.1597x107'2 2.5797x10~'

v =0.25

w N=1 N=2 N=3 N=4 N=5

16  1.0387x107%% 1.4169x10™™* 3.9576x107% 7.3553x107%7 1.9663x10~®

32 3.3818x107%  1.1911x107% 2.2383x107%7 7.4183x10™% 1.4550x107'°

64  1.1523x107%  7.3880x107Y7 2.5575x107%° 3.6767x107!" 7.6360x10~"3

100 5.4517x107% 2.3058x107%7 4.1691x107'0 1.7234x107'2 1.2080x107'4
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Example 2. We compute the following highly oscillatory logarithmic-algebraic singular integral:

2 iwx
ILf(@.p.1)] = f In(x —a)In(b — x)f(x)e 42)

L =@ BB - 0 (x— 05y

Tables 3 and 4 demonstrate the absolute error for (4.2) computed by the proposed method, where
f(x) = sin(x) and e* are considered for y = 1 and 0.25. The results in these tables illustrate that the

absolute error decays for different values of N and w.

Table 3. The absolute error for the integral (4.2), where f(x) = e*.

vy=1
w N=1 N=2 N=3 N=4 N=5
16  5.4109x1079 5.0436x107% 3.5121x107%7 9.1072x10™% 2.3272x107'°
32 2.0124x1072 2.9934x107% 8.8245x10°%° 5.3313x10°!' 3.7356x107"3
64  8.0763x107"  3.9809x107Y7 1.7532x107'% 3.2672x107!* 3.9721x107%
100 4.4738x107%  9.72906x10°% 1.1176x10°'"" 1.6758x107'* 1.0741x107'4
v =0.25
w N=1 N=2 N=3 N=4 N=5
16  1.3568x107°" 2.2617x10°* 2.8969x107%" 3.6345x107'0 7.8237x107!2
32 5.3236x107%  2.2695x107%  7.2418x107% 1.6402x107!2 1.0049x10~'4
64  2.0644x1072 2.2039x107% 1.7434x107'0 1.2810x107* 5.0243x10713
100 1.1347x1079%  4.9752x107%7  1.6120x107"" 1.4459x107'* 1.0805x107'4
Table 4. The absolute error for the integral (4.2), where f(x) = sin(x).
vy=1
W N=1 N=2 N=3 N=4 N=5
16  1.0120x107%% 1.1040x10™% 1.1431x107%7 2.6130x10° 6.7293x107!"!
32 4.0522x107%  1.5639x107Y7 3.1632x107%° 1.5340x10°'" 1.1108x10~"3
64  1.5929x107  7.0363x107%® 6.6182x107'" 9.4826x107'* 6.2803x107'6
100 8.7682x107% 1.8344x10™% 4.9202x107'2 3.6146x10715 8.8991x107!6
v =0.25
w N=1 N=2 N=3 N=4 N=5
16 8.4422x107%  1.4257x107%  3.1224x107%® 9.1619x10°"" 1.8926x107'2
32 2.3132x107%  9.9918x107Y7  8.4400x107'0 6.2828x1071%  4.2130x1071
64  1.1195x107°  1.1932x107Y7 2.0359x10°'"" 5.6217x107"° 5.0243x10713
100 5.9877x107%  2.6306x10°% 1.9069x107'> 1.8971x107!> 6.2804x107'6

Example 3. For the following highly oscillatory logarithmic-algebraic singular integral

If(@.B, )] = f

' In(x — a) In(b — x) f(x)e“*

1 (X - CZ)O'S(b — X)O.ZS(X _ 01)7 X,

4.3)

Table 5 illustrates the absolute error of the integral (4.3) for f(x) = e* and y = 1, computed by the
proposed method. Figure 2 exhibits the absolute error, while Figure 3 shows the scaled absolute error

AIMS Mathematics Volume 10, Issue 3, 4899-4914.
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for (4.3) for different values of N and w from 10 to 1000. From Figure 2, it is evident that absolute
error decays as w increases.

Table 5. The absolute error for the integral (4.3), where f(x) = e*andy = 1.

w N=1 N=2 N=3 N=4 N=5

16 4.7363x107%  9.7077x107% 5.6466x107%7 2.2761x107% 1.4088x10~%
32 9.2576x107™  1.3682x107%  1.1814x107% 2.2426x107!* 5.1658x1071
64  1.6992x107% 1.3318x107Y7 1.2655x107'% 6.0465x1071% 5.5132x1071°

100 3.8099x107%

6.9435x107%

2.2250x107!!

4.0757x1074

1.3878x10716

100}

1010
X s

P

102 10° 10'
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0 100 200 300 400 500 600 700 800 900 1000

Figure 3. Absolute error scaled by (3.1) for the integral (4.3), where f(x) = ¢* and N=1,2,3.

Example 4. For the following highly oscillatory logarithmic-algebraic singular integral

1 iwx
ILf(@.p.1)] = f In(x —a)In(b — x)f(x)e 4.4)

L G @72 = 0= 0.5

Table 6 presents the absolute error for f(x) = sin(x) and y = 1. This shows that accurate results can
be obtained for different values of N and w. Figure 4 reveals the absolute error, while Figure 5 presents
the scaled absolute error for (4.4) for different values of N and w from 10 to 1000. Figure 4 indicates
that the absolute error improves as w increases.
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Table 6. The absolute error for the integral (4.4), where f(x) = sin(x) and y = 1.

w  N=1 N=2 N=3 N=4 N=5

16 5.9832x107% 22868 x10™*  1.9090x107%" 2.2837x107% 3.5432x10~""

32 1.9802x107%  2.0992x107%  5.9049x1077 2.6973x10™%® 1.7555x10°%

64  6.5030x107%  1.7242x107%  1.3336x107% 1.8053x107'* 3.7305x107'

100 2.2692x107%  3.3430x107"  1.0928x10°% 6.2868x107'* 5.6206x10~'*
e ) M

Figure 4. Absolute error for the integral (4.4), where f(x) = sin(x) and N = 1,2, 3.
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Figure 5. Absolute error scaled by (3.1) for the integral (4.4), where f(x) = sin(x) and

N=1,2,3.

Example 5. Let’s consider the highly oscillatory logarithmic-algebraic singular integral as

I[f(a.B,1)] =

2 In(x — a) In(b — x) f(x)e™™™

o (=) 2(b— x)P*x— 15y

4.5)

Table 7 gives the absolute error results for f(x) = cos(x) andy = 0. Figures 6 and 7 reveal the absolute
error and scaled absolute error of (4.5) for different values of N and w from 10 to 1000, respectively.
Figure 6 presents an improvement in absolute error for higher values of w.

Table 7. The absolute error for the integral (4.5), where f(x) = cos(x) and y = 0.

w  N=1 N=2 N=3 N=4 N=5
16 7.7189x107% 33414 x107% 2.7082x107% 1.9848x107!" 6.9663x10~'?
32 2.7662x107%  3.1279x107%  2.7699x1071°  2.3940x107"2  6.3064x1071

64  9.5127x107%
100 3.3617x107%

2.7529x107%
4.2396x107%8

2.2501x10712
9.7764x10713

1.8275x107
4.9183x107!°

5.1516x10716
3.8560x10716
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Figure 7. Absolute error scaled by (3.1) for the integral (4.5), where f(x) = cos(x) and
N=1,273.

Example 6. Let’s consider the following highly oscillatory logarithmic-algebraic singular integral as

' In(x — @) In(b — x)]° f(x)e'*
0 (x)05(1 — x)0-34

I[f(a,B,0)] = dx. (4.6)

Table 8 represents the comparison of absolute and relative errors given in [14] for (4.6) for f(x) =
cos(x) and s = v, = 0. The proposed method can obtain more accurate results for N = 5 than the
Clenshaw-Curtis-Filon method discussed in [14].

Table 8. The comparison for the integral (4.6), where f(x) = cos(x) and s = y; = 0 with [14].
w AEs [14]  AEs[f(a,B,0)] REs[14] REs[f(a,B,0)]

500  4.7x107°  4.7x1071 6.1x1078  6.0x1071
1000 9.4x1071° 3.6x 1071 1.5x107% 59x 107
3000 1.1x107'% 2.3x 1071 3.1 x107 6.7x 1071
5000 7.7x107'" 3.1x 1071 3.4x107°  14x 1071

Table 9 illustrates the absolute error comparison for (4.6) for f(x) = sin(x), s = 1, and y;, = 0 with
results provided in [19]. The proposed method obtains high precision results as w increases compared

to the high order Clenshaw-Curtis-Filon method based on Hermite interpolation Py, v = 0,1,2
discussed in [19].

AIMS Mathematics Volume 10, Issue 3, 4899-4914.
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Table 9. The comparison for integral (4.6), where f(x) = sin(x), s = 1, and y; = 0 with [19].

w 25 100 400

N r AENIPCCT19] AEN[f(e,B,)] AENIPCCT19] AEN[f(a,B,D] AENITCCTI19] AEN[f(a.,B,D)]
0 4.2x107% 3.7 x107% 7.4x107%

2 1 2.5%x107% 2.5%107% 7.8x10798 3.2x107% 9.6x1071° 3.6x10712
2 3.1x107% 5.7 x10710 6.4x10712
0 6.8x107% 4.4 x107% 8.0x107Y

4 1 6.5x10™ 3.2x107% 5.4x10710 1.1x10713 7.7x107 11 4.8x1071°
2 7.3x107!! 8.2 x10713 5.8x1071
0 2.1x107%8 8.7 x107% 1.9%107%°

6 1 5.0x1071 3.6x10712 6.9%x10712 4.8x1071° 5.3%x107 3.2x10716
2 8.4x1074 1.2 x10714 3.7x10°1

5. Conclusions

This paper proposes and illustrates substantiation of performance for the proposed method to
compute the integral (1.1). The presented method exhibited an astonishing comparison with [14, 19]
that shows higher precision approximation for N fixed as the frequency w increased for singular
integrals. Moreover, the method was found to be accurate and effective at moderate and very large
frequencies. All the above figures and tables demonstrate that as w or N increases, the current approach
can produce more accurate approximations. In conclusion, the robustness and stability of the proposed
method ensure its reliability for calculating highly oscillatory logarithmic-algebraic singular integrals.
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