Chameleon systems are dynamical systems that exhibit either self-excited or hidden oscillations depending on the parameter values. This paper presents a comprehensive investigation of a quadratic chameleon system, including an analysis of its symmetry, dissipation, local stability, Hopf bifurcation, and various chaotic dynamics as the control parameters $ (\mu, a, c) $ vary. Here, $ \mu $ serves as the dissipation parameter in the $ y $ direction. Bifurcation analysis for four scenarios with $ \mu = 0 $ was performed, revealing the emergence of various dynamical phenomena under different parameter settings. Offset boosting means introducing a constant into one of the state variables of the system for boosting the variable to a different level. Additionally, hidden chaotic bistability with offset boosting was exhibited by varying $ \mu $. The parameter $ \mu $ serves as both the Hopf bifurcation parameter and the offset boosting parameter, while the other parameters $ (a, c) $ also play critical roles as control parameters, resulting in period-doubling routes to self-excited or hidden chaotic attractors. These findings enrich our understanding of nonlinear dynamics in quadratic chameleon systems.
Citation: Jie Liu, Bo Sang, Lihua Fan, Chun Wang, Xueqing Liu, Ning Wang, Irfan Ahmad. Symmetry, Hopf bifurcation, and offset boosting in a novel chameleon system[J]. AIMS Mathematics, 2025, 10(3): 4915-4937. doi: 10.3934/math.2025225
Chameleon systems are dynamical systems that exhibit either self-excited or hidden oscillations depending on the parameter values. This paper presents a comprehensive investigation of a quadratic chameleon system, including an analysis of its symmetry, dissipation, local stability, Hopf bifurcation, and various chaotic dynamics as the control parameters $ (\mu, a, c) $ vary. Here, $ \mu $ serves as the dissipation parameter in the $ y $ direction. Bifurcation analysis for four scenarios with $ \mu = 0 $ was performed, revealing the emergence of various dynamical phenomena under different parameter settings. Offset boosting means introducing a constant into one of the state variables of the system for boosting the variable to a different level. Additionally, hidden chaotic bistability with offset boosting was exhibited by varying $ \mu $. The parameter $ \mu $ serves as both the Hopf bifurcation parameter and the offset boosting parameter, while the other parameters $ (a, c) $ also play critical roles as control parameters, resulting in period-doubling routes to self-excited or hidden chaotic attractors. These findings enrich our understanding of nonlinear dynamics in quadratic chameleon systems.
[1] | R. A. Meyers, Encyclopedia of physical science and technology, San Diego: Academic Press, 1992. |
[2] |
C. Li, W. Hu, J. C. Sprott, X. Wang, Multistability in symmetric chaotic systems, Eur. Phys. J. Spec. Top., 224 (2015), 1493–1506. https://doi.org/10.1140/epjst/e2015-02475-x doi: 10.1140/epjst/e2015-02475-x
![]() |
[3] |
T. A. Alexeeva, N. V. Kuznetsov, T. N. Mokaev, Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents, Chaos Soliton. Fract., 152 (2021), 111365. https://doi.org/10.1016/j.chaos.2021.111365 doi: 10.1016/j.chaos.2021.111365
![]() |
[4] |
S. Vaidyanathan, A. S. T. Kammogne, E. Tlelo-Cuautle, C. N. Talonang, B. Abd-El-Atty, A. A. Abd El-Latif, et al., A novel 3-D jerk system, its bifurcation analysis, electronic circuit design and a cryptographic application, Electronics, 12 (2023), 2818. https://doi.org/10.3390/electronics12132818 doi: 10.3390/electronics12132818
![]() |
[5] |
C. Nwachioma, J. H. P'erez-Cruz, Analysis of a new chaotic system, electronic realization and use in navigation of differential drive mobile robot, Chaos Soliton. Fract., 144 (2021), 110684. https://doi.org/10.1016/j.chaos.2021.110684 doi: 10.1016/j.chaos.2021.110684
![]() |
[6] |
N. V. Kuznetsov, G. A. Leonov, V. I. Vagaitsev, Analytical-numerical method for attractor localization of generalized Chua's system, IFAC Proc. Vol., 43 (2010), 29–33. https://doi.org/10.3182/20100826-3-TR-4016.00009 doi: 10.3182/20100826-3-TR-4016.00009
![]() |
[7] |
G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Localization of hidden Chua's attractors, Phys. Lett. A, 375 (2011), 2230–2233. https://doi.org/10.1016/j.physleta.2011.04.037 doi: 10.1016/j.physleta.2011.04.037
![]() |
[8] |
G. A. Leonov, N. V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurcat. Chaos, 23 (2013), 1330002. https://dx.doi.org/10.1142/S0218127413300024 doi: 10.1142/S0218127413300024
![]() |
[9] |
N. V. Stankevich, N. V. Kuznetsov, G. A. Leonov, L. O. Chua, Scenario of the birth of hidden attractors in the Chua circuit, Int. J. Bifurcat. Chaos, 27 (2017), 1730038. https://doi.org/10.1142/S0218127417300385 doi: 10.1142/S0218127417300385
![]() |
[10] |
N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, L. Chua, Hidden attractors in Chua circuit: mathematical theory meets physical experiments, Nonlinear Dyn., 111 (2023), 5859–5887. https://doi.org/10.1007/s11071-022-08078-y doi: 10.1007/s11071-022-08078-y
![]() |
[11] |
Q. Wu, Q. Hong, X. Liu, X. Wang, Z. Zeng, A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors, Chaos Soliton. Fract., 134 (2020), 109727. https://doi.org/10.1016/j.chaos.2020.109727 doi: 10.1016/j.chaos.2020.109727
![]() |
[12] |
H. Tian, Z. Wang, P. Zhang, M. Chen, Y. Wang, Dynamic analysis and robust control of a chaotic system with hidden attractor, Complexity, 2021 (2021), 8865522. https://doi.org/10.1155/2021/8865522 doi: 10.1155/2021/8865522
![]() |
[13] |
F. Bao, S. Yu, How to generate chaos from switching system: a saddle focus of index 1 and heteroclinic loop-based approach, Math. Probl. Eng., 2011 (2011), 756462. https://doi.org/10.1155/2011/756462 doi: 10.1155/2011/756462
![]() |
[14] |
T. Zhou, G. Chen, Classification of chaos in 3-D autonomous quadratic systems-Ⅰ: basic framework and methods, Int. J. Bifurcat. Chaos, 16 (2006), 2459–2479. https://doi.org/10.1142/S0218127406016203 doi: 10.1142/S0218127406016203
![]() |
[15] |
Z. Wei, J. C. Sprott, H. Chen, Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium, Phys. Lett. A, 379 (2015), 2184–2187. https://doi.org/10.1016/j.physleta.2015.06.040 doi: 10.1016/j.physleta.2015.06.040
![]() |
[16] |
K. Rajagopal, V. T. Pham, F. R. Tahir, A. Akgul, H. R. Abdolmohammadi, S. Jafari, A chaotic jerk system with non-hyperbolic equilibrium: dynamics, effect of time delay and circuit realisation, Pramana, 90 (2018), 52. https://doi.org/10.1007/s12043-018-1545-x doi: 10.1007/s12043-018-1545-x
![]() |
[17] |
X. Cai, L. Liu, Y. Wang, C. Liu, A 3D chaotic system with piece-wise lines shape non-hyperbolic equilibria and its predefined-time control, Chaos Soliton. Fract., 146 (2021), 110904. https://doi.org/10.1016/j.chaos.2021.110904 doi: 10.1016/j.chaos.2021.110904
![]() |
[18] |
C. Li, W. Hai, Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points, Automatika, 59 (2018), 184–193. https://doi.org/10.1080/00051144.2018.1516273 doi: 10.1080/00051144.2018.1516273
![]() |
[19] |
C. Li, J. C. Sprott, Chaotic flows with a single nonquadratic term, Phys. Lett. A, 378 (2014), 178–183. https://doi.org/10.1016/j.physleta.2013.11.004 doi: 10.1016/j.physleta.2013.11.004
![]() |
[20] |
S. Jafari, J. C. Sprott, F. Nazarimehr, Recent new examples of hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1469–1476. https://doi.org/10.1140/epjst/e2015-02472-1 doi: 10.1140/epjst/e2015-02472-1
![]() |
[21] |
X. Wang, G. Chen, A chaotic system with only one stable equilibrium, Commun. Nonlinear Sci., 17 (2012), 1264–1272. https://doi.org/10.1016/j.cnsns.2011.07.017 doi: 10.1016/j.cnsns.2011.07.017
![]() |
[22] |
X. Wang, A. Akgul, S. Cicek, V. T. Pham, D. V. Hoang, A chaotic system with two stable equilibrium points: dynamics, circuit realization and communication application, Int. J. Bifurcat. Chaos, 27 (2017), 1750130. https://doi.org/10.1142/S0218127417501309 doi: 10.1142/S0218127417501309
![]() |
[23] |
P. C. Rech, Self-excited and hidden attractors in a multistable jerk system, Chaos Soliton. Fract., 164 (2022), 112614. https://doi.org/10.1016/j.chaos.2022.112614 doi: 10.1016/j.chaos.2022.112614
![]() |
[24] |
V. T. Pham, S. Jafari, C. Volos, T. Kapitaniak, A gallery of chaotic systems with an infinite number of equilibrium points, Chaos Soliton. Fract., 93 (2016), 58–63. https://doi.org/10.1016/j.chaos.2016.10.002 doi: 10.1016/j.chaos.2016.10.002
![]() |
[25] |
M. Molaie, S. Jafari, J. C. Sprott, S. M. Golpayegani, Simple chaotic flows with one stable equilibrium, Int. J. Bifurcat. Chaos, 23 (2013), 1350188. https://doi.org/10.1142/S0218127413501885 doi: 10.1142/S0218127413501885
![]() |
[26] |
S. Jafari, J. C. Sprott, Simple chaotic flows with a line equilibrium, Chaos Soliton. Fract., 57 (2013), 79–84. https://doi.org/10.1016/j.chaos.2013.08.018 doi: 10.1016/j.chaos.2013.08.018
![]() |
[27] |
S. Kumarasamy, M. Banerjee, V. Varshney, M. D. Shrimali, N. V. Kuznetsov, A. Prasad, Saddle-node bifurcation of periodic orbit route to hidden attractors, Phys. Rev. E, 107 (2023), L052201. https://doi.org/10.1103/PhysRevE.107.L052201 doi: 10.1103/PhysRevE.107.L052201
![]() |
[28] |
R. Balamurali, J. Kengne, R. G. Chengui, K. Rajagopal, Coupled van der Pol and Duffing oscillators: emergence of antimonotonicity and coexisting multiple self-excited and hidden oscillations, Eur. Phys. J. Plus, 137 (2022), 789. https://doi.org/10.1140/epjp/s13360-022-03000-2 doi: 10.1140/epjp/s13360-022-03000-2
![]() |
[29] |
B. Li, B. Sang, M. Liu, X. Hu, X. Zhang, N. Wang, Some jerk systems with hidden chaotic dynamics, Int. J. Bifurcat. Chaos, 33 (2023), 2350069. https://doi.org/10.1142/S0218127423500694 doi: 10.1142/S0218127423500694
![]() |
[30] |
C. Dong, M. Yang, L. Jia, Z. Li, Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors, Phys. A, 633 (2024), 129391. https://doi.org/10.1016/j.physa.2023.129391 doi: 10.1016/j.physa.2023.129391
![]() |
[31] |
J. C. Sprott, Strange attractors with various equilibrium types, Eur. Phys. J. Spec. Top., 224 (2015), 1409–1419. https://doi.org/10.1140/epjst/e2015-02469-8 doi: 10.1140/epjst/e2015-02469-8
![]() |
[32] |
M. A. Jafari, E. Mliki, A. Akgul, V. T. Pham, S. T. Kingni, X. Wang, S. Jafari, Chameleon: the most hidden chaotic flow, Nonlinear Dyn., 88 (2017), 2303–2317. https://doi.org/10.1007/s11071-017-3378-4 doi: 10.1007/s11071-017-3378-4
![]() |
[33] |
K. Rajagopal, A. Karthikeyan, P. Duraisamy, Hyperchaotic chameleon: fractional order FPGA implementation, Complexity, 2017 (2017), 8979408. https://doi.org/10.1155/2017/8979408 doi: 10.1155/2017/8979408
![]() |
[34] |
H. Natiq, M. R. Said, M. R. Ariffin, S. He, L. Rondoni, S. Banerjee, Self-excited and hidden attractors in a novel chaotic system with complicated multistability, Eur. Phys. J. Plus, 133 (2018), 557. https://doi.org/10.1140/epjp/i2018-12360-y doi: 10.1140/epjp/i2018-12360-y
![]() |
[35] |
S. Cang, Y. Li, R. Zhang, Z. Wang, Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points, Nonlinear Dyn., 95 (2019), 381–390. https://doi.org/10.1007/s11071-018-4570-x doi: 10.1007/s11071-018-4570-x
![]() |
[36] |
Q. Yang, Z. Wei, G. Chen, An unusual 3D autonomous quadratic chaotic system with two stable node-foci, Int. J. Bifurcat. Chaos, 20 (2010), 1061–1083. https://doi.org/10.1142/S0218127410026320 doi: 10.1142/S0218127410026320
![]() |
[37] |
V. F. Signing, G. G. Tegue, M. Kountchou, Z. T. Njitacke, N. Tsafack, J. D. Nkapkop, et al., A cryptosystem based on a chameleon chaotic system and dynamic DNA coding, Chaos Soliton. Fract., 155 (2022), 111777. https://doi.org/10.1016/j.chaos.2021.111777 doi: 10.1016/j.chaos.2021.111777
![]() |
[38] |
W. Fan, D. Xu, Z. Chen, N. Wang, Q. Xu, On two-parameter bifurcation and analog circuit implementation of a chameleon chaotic system, Phys. Scr., 99 (2023), 015218. https://doi.org/10.1088/1402-4896/ad1231 doi: 10.1088/1402-4896/ad1231
![]() |
[39] |
A. Tiwari, R. Nathasarma, B. K. Roy, A new time-reversible 3D chaotic system with coexisting dissipative and conservative behaviors and its active non-linear control, J. Franklin I., 361 (2024), 106637. https://doi.org/10.1016/j.jfranklin.2024.01.038 doi: 10.1016/j.jfranklin.2024.01.038
![]() |
[40] |
R. Zhou, Y. Gu, J. Cui, G. Ren, S. Yu, Nonlinear dynamic analysis of supercritical and subcritical Hopf bifurcations in gas foil bearing-rotor systems, Nonlinear Dyn., 103 (2021), 2241–2256. https://doi.org/10.1007/s11071-021-06234-4 doi: 10.1007/s11071-021-06234-4
![]() |
[41] |
N. V. Stankevich, N. V. Kuznetsov, G. A. Leonov, L. O. Chua, Scenario of the birth of hidden attractors in the Chua circuit, Int. J. Bifurcat. Chaos, 27 (2017), 1730038. https://doi.org/10.1142/S0218127417300385 doi: 10.1142/S0218127417300385
![]() |
[42] |
H. Zhao, Y. Lin, Y. Dai, Hopf bifurcation and hidden attractor of a modified Chua's equation, Nonlinear Dyn., 90 (2017), 2013–2021. https://doi.org/10.1007/s11071-017-3777-6 doi: 10.1007/s11071-017-3777-6
![]() |
[43] |
M. Liu, B. Sang, N. Wang, I. Ahmad, Chaotic dynamics by some quadratic jerk systems, Axioms, 10 (2021), 227. https://doi.org/10.3390/axioms10030227 doi: 10.3390/axioms10030227
![]() |
[44] |
Q. Yang, D. Zhu, L. Yang, A new 7D hyperchaotic system with five positive Lyapunov exponents coined, Int. J. Bifurcat. Chaos, 28 (2018), 1850057. https://doi.org/10.1142/S0218127418500578 doi: 10.1142/S0218127418500578
![]() |
[45] |
Z. Li, K. Chen, Neuromorphic behaviors in a neuron circuit based on current-controlled Chua Corsage Memristor, Chaos Soliton. Fract., 175 (2023), 114017. https://doi.org/10.1016/j.chaos.2023.114017 doi: 10.1016/j.chaos.2023.114017
![]() |
[46] |
Y. Liu, Y. Zhou, B. Guo, Hopf bifurcation, periodic solutions, and control of a new 4D hyperchaotic system, Mathematics, 11 (2023), 2699. https://doi.org/10.3390/math11122699 doi: 10.3390/math11122699
![]() |
[47] |
C. Li, J. C. Sprott, Variable-boostable chaotic flows, Optik, 127 (2016), 10389–10398. https://doi.org/10.1016/j.ijleo.2016.08.046 doi: 10.1016/j.ijleo.2016.08.046
![]() |
[48] |
C. Li, A. Akgul, L. Bi, Y. Xu, C. Zhang, A chaotic jerk oscillator with interlocked offset boosting, Eur. Phys. J. Plus, 139 (2024), 242. https://doi.org/10.1140/epjp/s13360-024-05040-2 doi: 10.1140/epjp/s13360-024-05040-2
![]() |
[49] |
C. Li, X. Wang, G. Chen, Diagnosing multistability by offset boosting, Nonlinear Dyn., 90 (2017), 1335–1341. https://doi.org/10.1007/s11071-017-3729-1 doi: 10.1007/s11071-017-3729-1
![]() |
[50] |
X. Gao, Hamilton energy of a complex chaotic system and offset boosting, Phys. Scr., 99 (2024), 015244. https://doi.org/10.1088/1402-4896/ad1739 doi: 10.1088/1402-4896/ad1739
![]() |
[51] |
X. Zhang, C. Li, T. Lei, H. Fu, Z. Liu, Offset boosting in a memristive hyperchaotic system, Phys. Scr., 99 (2024), 015247. https://doi.org/10.1088/1402-4896/ad156e doi: 10.1088/1402-4896/ad156e
![]() |
[52] | H. Dang-Vu, C. Delcarte, Bifurcations et Chaos: une introduction à la dynamique contemporaine avec des programmes en Pascal, Fortran et Mathematica, Paris: Ellipses, 2000. |
[53] |
C. Grebogi, E. Ott, J. A. Yorke, Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics, Science, 238 (1987), 632–638. https://doi.org/10.1126/science.238.4827.632 doi: 10.1126/science.238.4827.632
![]() |