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Abstract: Chameleon systems are dynamical systems that exhibit either self-excited or hidden
oscillations depending on the parameter values. This paper presents a comprehensive investigation
of a quadratic chameleon system, including an analysis of its symmetry, dissipation, local stability,
Hopf bifurcation, and various chaotic dynamics as the control parameters (µ, a, c) vary. Here, µ serves
as the dissipation parameter in the y direction. Bifurcation analysis for four scenarios with µ = 0
was performed, revealing the emergence of various dynamical phenomena under different parameter
settings. Offset boosting means introducing a constant into one of the state variables of the system
for boosting the variable to a different level. Additionally, hidden chaotic bistability with offset
boosting was exhibited by varying µ. The parameter µ serves as both the Hopf bifurcation parameter
and the offset boosting parameter, while the other parameters (a, c) also play critical roles as control
parameters, resulting in period-doubling routes to self-excited or hidden chaotic attractors. These
findings enrich our understanding of nonlinear dynamics in quadratic chameleon systems.
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1. Introduction

Chaos theory is a field of study that involves the mathematical analysis of complex deterministic
systems exhibiting unstable aperiodic behavior. In chaotic systems, even a tiny difference in the initial
conditions can lead to significantly different outcomes over time. As a way of understanding and
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describing the long-term behavior of a chaotic system, a chaotic attractor has at least one positive
Lyapunov exponent [1]. Bifurcation diagrams can provide insights into the mechanisms behind the
chaotic behavior. After transients decay, bifurcation diagrams can be constructed by recording either
the Poincaré section intersections or the local peaks of the system’s trajectory. By understanding the
underlying mechanisms, it is possible to control and predict the behavior of the system. Amplitude
control refers to the ability to regulate the magnitude of a signal, typically in the context of chaotic
systems. It was shown in [2] that symmetric chaotic systems can be both multistable and also have an
independent amplitude control parameter. Chaos has found applications across various fields, including
economics [3], cryptography [4], and robotics [5], among others.

In their work on Chua circuits, Leonov, Kuznetsov et al. [6–8] introduced the classification
of attractors as hidden or self-excited, and they proposed an effective procedure for localizing hidden
attractors based on homotopy and numerical continuation. The classification is a crucial concept,
which represents a contemporary extension of Andronov’s theory of oscillations and provides a
fundamental understanding of the existence and characteristics of hidden oscillatory behavior in
chaotic models [9, 10].

A self-excited attractor refers to an attractor whose basin of attraction intersects an open
neighborhood of an equilibrium. It can be numerically found by plotting the trajectory of the system
with random initial conditions near the equilibria. On the other hand, a hidden attractor is an attractor
whose basin of attraction does not intersect with small neighborhoods of any equilibrium points. This
implies that it cannot be numerically found using random initial conditions and demands special
analytical-numerical procedures to locate its basin of attraction. In practice, there is a need to control
the hidden attractors, because some structures (such as bridges or airplane wings) can display
catastrophic responses under disturbances [11, 12]. According to [13], a saddle focus of index 2 is
defined by an equilibrium with three eigenvalues: one real γ and a pair of complex conjugates σ ± jω,
where γ < 0 and σ > 0. Shilnikov homoclinic and heteroclinic theorems provide sufficient conditions
for the existence of self-excited chaotic attractors in 3D systems with unstable hyperbolic equilibria.
Saddle-foci with an index of 2 are frequently encountered in such systems. As noted by Zhou and
Chen [14], the chaotic attractors of Lorenz, Rössler, Chua, Chen, and many other systems are in the
sense of Shilnikov, but not all chaotic attractors are of Shilnikov sense. Beyond the scope of Shilnikov
theorems, many chaotic flows with various types of non-hyperbolic equilibria were
introduced [15–17]. Li and Hai [18] introduced a three-dimensional robust chaotic system with two
non-hyperbolic equilibrium points, exhibiting features of amplitude and position modulation. It is
shown that the presence of linear terms is not essential in producing complex behaviors [19].

In a review paper, Jafari et al. [20] noted that dissipative hidden chaotic flows can be categorized
into three types: those with a stable equilibrium [21, 22], those without equilibrium [23], and those
with an infinite number of equilibria [24]. Molaie et al. [25] proposed twenty-three chaotic flows with
a single stable equilibrium point. Jafari and Sprott [26] proposed nine chaotic flows with hidden
attractors that have a line equilibrium. Kumarasamy et al. [27] investigated how saddle-node
bifurcations contribute to the emergence of hidden attractors, both in systems with stable equilibrium
points and those without equilibrium points. Antimonotonicity refers to the intertwined creation and
destruction of periodic orbits in nonlinear dynamical systems, leading to inevitable reversals of
bifurcation cascades [28]. For a family of jerk systems with a hyperbolic tangent function, Li et
al. [29] illustrated that antimonotonicity is important in elucidating the generation mechanism of
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hidden attractors with a stable equilibrium. Recently, Dong et al. [30] investigated a chaotic system
that has no equilibrium through numerical simulations and circuit implementations, and discussed
engineering applications such as synchronization, offset boosting control, and image encryption.

A chameleon system is a chaotic system that, as parameter values vary, can exhibit various types of
chaotic attractors, including self-excited attractors and the three types of hidden attractors. This
feature provides flexibility in applications needing different types of chaotic signals. In a review
paper, Sprott [31] categorized chaotic flows from a quadratic family based on equilibrium points, in
which both self-excited and hidden attractors are involved. Jafari et al. [32] introduced a chameleon
system with quadratic nonlinearities, contributing to an enhanced understanding of chaotic attractors,
especially those that are hidden. Recall that a hyperchaotic system is defined as a dynamical system
that exhibits chaotic behavior, characterized by the presence of multiple positive Lyapunov exponents.
Motivated by [32], Rajagopal et al. [33] presented a hyperchaotic chameleon system, contributing to a
deeper understanding of hidden chaotic flows of higher dimensions. Natiq et al. [34] presented a
chameleon system with a trigonometric nonlinear controller. Cang et al. [35] investigated the hidden
and self-excited coexisting attractors in the Yang system [36]. Signing et al. [37] introduced a
chameleon cryptosystem that combines chameleon chaotic systems with dynamic DNA coding to
enhance image encryption security through the use of chaotic sequences. Fan et al. [38] investigated
the two-parameter space bifurcation of the Wei chameleon system. Recently, Tiwari et al. [39]
introduced a class of quadratic chameleon systems that allow for the coexistence of hidden chaotic
attractors and conservative tori.

A Hopf bifurcation is a local bifurcation where an equilibrium of a dynamical system changes
stability as a parameter is varied. This phenomenon occurs when the equilibrium possesses a pair of
purely imaginary eigenvalues, accompanied by specific transversality conditions and an absence of
zero eigenvalues. The bifurcation can be classified as either supercritical or subcritical, resulting in
either a stable or an unstable limit cycle within an invariant two-dimensional manifold, respectively.
The latter situation presents a potential risk, as stable, large-amplitude limit cycles can coexist with
the stable equilibrium point [40]. Stankevich et al. [41] and Zhao et al. [42] studied the dynamics of
the Chua systems, establishing a connection between subcritical Hopf bifurcations of equilibria and
the emergence of hidden attractors. Using a family of quadratic jerk systems, Liu et al. [43] also
showed that subcritical Hopf bifurcations are closely related to the emergence of hidden attractors.
Yang et al. [44] proposed a 7D hyperchaotic system with five positive exponents and investigated
Hopf bifurcation to understand how complex dynamics emerge in this system. Li and Chen [45]
demonstrated the complex neuromorphic behaviors of a novel current-controlled Chua corsage
memristor-based neuron circuit through Hopf bifurcation and edge-of-chaos analysis. Liu et al. [46]
explored a 4D hyperchaotic system through Hopf bifurcation analysis and the linear control method.

The design of a chaotic system with independent non-bifurcation parameters faces a significant
challenge due to the broadband random-like nature of chaos [47, 48]. Signal polarity refers to whether
a signal oscillates around zero (bipolar) or around a non-zero reference level (unipolar). Offset boosting
involves adjusting the average value of a state variable by introducing a constant term into the system
model, resulting in signal offset and enabling control of signal polarity. Li et al. [49] proposed an
offset boosting-based strategy for the identification of multistability in dynamical systems, employing
nonbifurcation operations for diagnosing multistability. In chaotic and hyperchaotic systems [50, 51],
offset boosting controls have been implemented, enabling direct offset regulation through the use of a
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single constant.
The paper is organized as follows. In Section 2, we introduce a novel chameleon system and conduct

a detailed study on its symmetry, dissipation, stability analysis, Hopf bifurcation, and chaotic dynamics
with µ varying. In Section 3, we perform a bifurcation analysis for scenarios 1 to 4 with µ = 0.
We investigate the system’s behavior under various parameter values, focusing on the emergence of
different dynamical phenomena. In Section 4, we investigate hidden chaotic bistability with offset
boosting through the variation of µ. In the final section, we synthesize our key findings and discuss
their implications.

2. A new chameleon system

Consider the quadratic system 

dx
dt
= y,

dy
dt
= −x + y(z + µ),

dz
dt
= f (x, y, z),

(2.1)

where
f (x, y, z) = a − b z + c y2 − 0.7 x2 − 3 xy.

It is symmetric with respect to 180-degree rotation about the z-axis. This means that the system is
invariant with respect to the transformation (x, y, z) → (−x,−y, z), corresponding to a 180-degree
rotation about the z-axis.

Let h = (h1, h2, h3) be the vector field of system (2.1). Thus the divergence function is

∇ · V = h1x + h2y + h3z = −b + (z + µ).

It is clear that system (2.1) is not always dissipative as the divergence depends on z. However, in
specific regions of the phase space where the condition ∇·V < 0 holds on average, we have a dissipative
flow. Due to the symmetry, system (2.1) can have a symmetrical attractor or a symmetric pair of
coexisting attractors.

2.1. Stability analysis

If a = b = 0, system (2.1) has a line equilibrium along the z-axis. This means that every
point (0, 0, z0) on the axis is an equilibrium point.

If a , 0 and b = 0, we have f (0, 0, z) = a , 0. Hence, there is no equilibrium point. When

x = y = 0, we have
dx
dt
=

dy
dt
= 0 and

dz
dt
= a , 0. This indicates that the z-axis is invariant under the

system’s flow. The direction of the flow along the z-axis is determined by the sign of a: if a > 0, the
flow is in the forward direction; if a < 0, the flow is in the backward direction.

If b , 0, there exists a unique equilibrium P : (0, 0, a/b). The Jacobian matrix of system (2.1) at P
is

A =


0 1 0
−1 µ +

a
b

0

0 0 −b

 .
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The corresponding characteristic polynomial is

φA(λ) = λ3 + p1 λ
2 + p2 λ + p3

= (λ + b)
(
λ2 −
(
µ +

a
b
)
λ + 1

)
. (2.2)

Proposition 2.1. Consider system (2.1) with b , 0. It is locally asymptotically stable around P if

b > 0 and a < −bµ. (2.3)

Proof. From (2.2) and Routh-Hurwitz criterion, the equilibrium P of system (2.1) is asymptotically
stable if b > 0 and µ +

a
b
< 0. Such constraints are equivalent to the inequalities stated in (2.3). Thus

the conclusion holds. □

Corollary 2.1. Consider system (2.1) with b > 0 and a < −bµ, and let

∆ =

(
µ +

a
b

)2
− 4.

We have the following conclusions.

(i) If ∆ < 0, then the equilibrium P is a stable node-focus.
(ii) If ∆ ≥ 0, then the equilibrium P is a stable node.

Proof. (i) Assume that ∆ < 0. From (2.2), we know that the characteristic polynomial has a negative
root and a pair of complex conjugate roots with a negative real part. Thus the equilibrium P is a stable
node-focus.

(ii) Assume that ∆ ≥ 0. From (2.2), we know that the characteristic polynomial has three negative
roots, counted with multiplicity. Therefore, the equilibrium P is a stable node. □

Assume a, b , 0 and µ = 0. Then system (2.1) can assume all types of hyperbolic equilibrium
points at P : (0, 0, a/b).

Corollary 2.2. Consider system (2.1) with b , 0 and µ = 0. The following statements hold.

(i) It is locally asymptotically stable around P if a < 0 and b > 0. In this case, if a > −2b, then the
equilibrium P is a stable node-focus; if a ≤ −2b, then the equilibrium is a stable node.

(ii) If a > 0 and b > 0, the equilibrium P is unstable. In this case, if a < 2b, the equilibrium P is a
saddle-focus of index 2; if a ≥ 2b, the equilibrium P is a saddle of index 2.

(iii) If b < 0, the equilibrium P is unstable. In this case, if 0 < a < −2b, the equilibrium P is a
saddle-focus of index 1; if a ≥ −2b, the equilibrium P is a saddle of index 1; if 2b < a < 0, the
equilibrium P is an unstable node-focus; and if a ≤ 2b, the equilibrium P is an unstable node.

Proof. (i) By setting µ = 0, the statements follow from Proposition 2.1 and Corollary 2.1.
(ii) Setting µ = 0, then the characteristic polynomial (2.2) becomes

φA(λ) = (λ + b)(λ2 −
a
b
λ + 1). (2.4)

Since a > 0 and b > 0, the quadratic factor of (2.4) can have a root with a positive real part. Thus the
equilibrium P is unstable.
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Assume that a, b > 0. If a < 2b, the cubic polynomial (2.4) has a negative root and a pair of
complex conjugate roots with a positive real part. Therefore, the equilibrium P is a saddle-focus of
index 2. If a ≥ 2b, the cubic polynomial (2.4) has a negative root and two positive roots. Therefore,
the equilibrium P is a saddle of index 2.

(iii) If b < 0, the characteristic polynomial (2.4) has a positive root λ = −b. Thus the equilibrium P
is unstable. The rest of the proof for classifying the equilibrium is similar to that of case (ii). □

2.2. Hopf bifurcation with µ varying

When a = 0, system (2.1) becomes

dx
dt
= y,

dy
dt
= −x + y(z + µ),

dz
dt
= −b z + c y2 − 0.7 x2 − 3 xy.

(2.5)

It has a unique equilibrium point at the origin. Here we assume that b > 0.

Proposition 2.2. When µ = 0, a Hopf bifurcation occurs at the origin for system (2.5).

Proof. The characteristic polynomial of this system is

φA(λ) = λ3 + p1(µ) λ2 + p2(µ) λ + p3(µ),

where
p1 = −µ + b, p2 = −b µ + 1, p3 = b.

Note that
(p1 p2 − p3)(µ) = b µ2 −

(
1 + b2

)
µ.

So

(p1 p2 − p3)(0) = 0, (2.6)
(p1 p2 − p3)′(0) = −(1 + b2) < 0. (2.7)

Thus, a Hopf bifurcation occurs from the origin at µ = 0. □

When µ = 0, system (2.5) becomes 

dx
dt
= y,

dy
dt
= −x + F2,

dz
dt
= −b z + F3,

(2.8)

where

F2 = yz,
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F3 = c y2 − 0.7 x2 − 3 xy.

According to [52], the first Lyapunov number a1 at the Hopf bifurcation can be obtained as

a1 =
−2

16 λ3
F2

yz

(
F3

xx + F3
yy

)
+

F2
yz

16 (4ω2 + λ2
3)

(
λ3

(
F3

xx − F3
yy

)
+ 4ωF3

xy

)
, (2.9)

where λ3 = −b and ω = −1.
By a simple computation, we have

a1 =
(30c − 7) b2 + 60b + (80c − 56)

80b (b2 + 4)
. (2.10)

Let us consider the following system:

dx
dt
= y,

dy
dt
= −x + y(z + µ),

dz
dt
= −b z + y2 − 0.7 x2 − 3 xy,

(2.11)

where b > 0.

Corollary 2.3. When µ = 0, a subcritical Hopf bifurcation occurs at the origin for system (2.11),
which generates one unstable limit cycle when µ is negative but not too small. For µ = 0, the origin is
unstable.

Proof. Note that b > 0 and system (2.11) is a special case of (2.5) with c = 1.
By setting c = 1 in (2.10), we have

a1 =
23 b2 + 60b + 24

80b (b2 + 4)
> 0, (2.12)

where a1 is the first Lyapunov number. According to Proposition 2.2, conditions (2.6) and (2.7), and
the sign of (2.12), we have the conclusions. □

The following results give us insights into the stability of the system (2.5).

Proposition 2.3. Consider system (2.5) with µ , 0 and b > 0. The stability properties of the origin are
characterized as follows:

(i) If −2 < µ < 0, the origin is a stable node-focus.
(ii) If 0 < µ < 2, the origin is a saddle-focus of index 2.
(iii) If µ ≤ −2, the origin is a stable node.
(iv) If µ ≥ 2, the origin is a saddle of index 2.

Proof. The Jacobian matrix of the system at the origin is

A =


0 1 0
−1 µ 0
0 0 −b

 .
The corresponding characteristic polynomial is

φA(λ) = (λ + b)(λ2 − µ λ + 1). (2.13)

By analyzing of the roots of (2.13), we can draw the four conclusions. □
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2.3. Chameleon chaotic dynamics with µ varying

Consider the following three systems:

dx
dt
= y,

dy
dt
= −x + y(z + µ),

dz
dt
= y2 − 0.7 x2 − 3 xy,

(2.14)



dx
dt
= y,

dy
dt
= −x + y(z + µ),

dz
dt
= 0.001 + y2 − 0.7 x2 − 3 xy,

(2.15)



dx
dt
= y,

dy
dt
= −x + y(z + µ),

dz
dt
= −0.01 z + y2 − 0.7 x2 − 3 xy,

(2.16)

where µ ∈ [−0.08, 0.02]. These systems can be obtained from system (2.1) by setting (a, b, c) =
(0, 0, 1), (a, b, c) = (0.001, 0, 1), and (a, b, c) = (0, 0.01, 1), respectively. Figure 1 shows the bifurcation
diagrams for these systems with respect to the parameter µ.

Let (L(k)
1 , L

(k)
2 , L

(k)
3 ), k = 1, 2, 3, be the Lyapunov exponent spectra of systems (2.14), (2.15),

and (2.16), respectively. For each k, the exponents satisfy L(k)
1 > 0, L(k)

2 = 0, and L(k)
3 < 0. The

variations of L(k)
1 and L(k)

3 with respect to the parameter µ for 1 ≤ k ≤ 3 are shown in Figure 2.
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(a) System (2.14) (b) System (2.15)

(c) System (2.16)

Figure 1. Bifurcation diagrams of systems (2.14)–(2.16) with respect to the parameter µ.
Initial data: (0.8, 0.8, 0) (blue), (−0.8,−0.8, 0) (red).

-0.08 -0.055 -0.03 -0.005 0.02
0

0.02

0.04

0.06

0.08

0.1

(a)

-0.08 -0.055 -0.03 -0.005 0.02
-0.8

-0.75

-0.7

-0.65

(b)

Figure 2. Lyapunov exponents of systems (2.14)–(2.16) with respect to the parameter µ.
Initial conditions: (0.8, 0.8, 0). (a) L(k)

1 , k = 1, 2, 3, (b) L(k)
3 , k = 1, 2, 3.
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Based on the two figures above and the nature of equilibrium points, we classify the dynamical
behaviors of these three systems into four scenarios:

Scenario 1: Hidden chaotic dynamics with a line equilibrium Note that system (2.14) has a line
equilibrium x = y = 0. Thus, from panel (a) of Figure 1, we see that system (2.14) exhibits a symmetric
pair of hidden chaotic attractors for µ ∈ [−0.08, 0.02], coexisting with a line equilibrium.

Scenario 2: Hidden chaotic dynamics without equilibrium It is clear that there is no equilibrium
in system (2.15). Thus, from panel (b) of Figure 1, we see that system (2.15) exhibits a symmetric pair
of hidden chaotic attractors without an equilibrium point for µ ∈ [−0.08, 0.02].

Scenario 3: Hidden chaotic dynamics with a stable equilibrium By Proposition 2.3, we know
that system (2.16) has a stable equilibrium at the origin when µ ∈ [−0.08, 0). Thus, from panel (c) of
Figure 1, we see that system (2.16) exhibits a symmetrical hidden chaotic attractor for µ ∈ [−0.08, 0).

Scenario 4: Self-excited chaotic dynamics with an unstable equilibrium By Corollary 2.3 and
Proposition 2.3, we know that system (2.16) has an unstable equilibrium at the origin when
µ ∈ [0, 0.02]. Thus, from panel (c) of Figure 1, we see that system (2.16) exhibits a symmetrical
self-excited chaotic attractor for µ ∈ [0, 0.02].

3. Bifurcation analysis for scenarios 1 to 4 with µ = 0

Using two fixed initial conditions and varying parameters c and a, we demonstrate the system’s
period-doubling routes to chaos when µ = 0. The analysis reveals that system (2.1) can exhibit either
self-excited or hidden chaotic attractors under different parameter settings.

3.1. Scenario 1 with c varying: Hidden chaotic dynamics with a line equilibrium

Let

f1(x, y) = y2 − 0.7 x2 − 3 xy, (3.1)
f2(x, y) = 1.008 y2 − 0.7 x2 − 3 xy. (3.2)

3.1.1. Coexistence of asymmetric hidden chaotic attractors

When µ = 0 and f (x, y, z) = f1(x, y), system (2.1) becomes

dx
dt
= y,

dy
dt
= −x + yz,

dz
dt
= y2 − 0.7 x2 − 3 xy.

(3.3)

It has a symmetric pair of hidden chaotic attractors with a line equilibrium, which is shown in Figure 3
by initiating with (x, y, z) = (±0.8,±0.8, 0). Figure 4 shows various projections of the coexisting hidden
chaotic attractors. The corresponding Poincaré maps for the two attractors are shown in Figure 5.
The set of dense points covering a certain region on the plane y = 0 shows that each attractor is
chaotic. When the initial conditions are set to (0.8, 0.8, 0), system (3.3) has Lyapunov exponents of
(L1, L2, L3) = (0.0548, 0,−0.6914) and a Kaplan-Yorke dimension of DKY = 2 − L1/L3 ≈ 2.079.
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The sum of the three exponents L1 + L2 + L3 = −0.6366 signifies that the system exhibits dissipative
behavior, characterized by a chaotic attractor.

Figure 3. A symmetric pair of hidden chaotic attractors of system (3.3) with a line
equilibrium (green). Initial data: (−0.8,−0.8, 0) (red), (0.8, 0.8, 0) (blue).

(a) x-y plane (b) y-z plane

(c) z-x plane

Figure 4. Projections of coexisting hidden chaotic attractors of system (3.3). (a) x-y plane,
(b) y-z plane, (c) z-x plane.

AIMS Mathematics Volume 10, Issue 3, 4915–4937.
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-2.31 -2.20 -2.09 -1.98 -1.87
-1.52

-1.5

-1.48

-1.46

-1.44

-1.42

(a)

-2.31 -2.20 -2.09 -1.98 -1.87

1.42

1.44

1.46

1.48

1.5

1.52

(b)

Figure 5. Poincaré maps of system (3.3) on the plane y = 0. Initial conditions:
(±0.8,±0.8, 0). (a) For (0.8, 0.8, 0) and dy

dt > 0. (b) For (−0.8,−0.8, 0) and dy
dt < 0.

3.1.2. Symmetrical hidden chaotic attractor

When µ = 0 and f (x, y, z) = f2(x, y), system (2.1) becomes

dx
dt
= y,

dy
dt
= −x + yz,

dz
dt
= 1.008 y2 − 0.7 x2 − 3 xy.

(3.4)

It has a symmetric hidden chaotic attractor with respect to the z-axis, which is visualized in Figure 6
by starting from the initial conditions (x, y, z) = (0.8, 0.8, 0). Moreover, the line equilibrium z-axis
is denoted by a green line. The Poincaré maps of the attractor are shown in Figure 7, in which
forward and backward directions are considered, respectively. When the initial conditions are set
to (0.8, 0.8, 0), system (3.4) has Lyapunov exponents of (L1, L2, L3) = (0.1179, 0,−0.7641) and a
Kaplan-Yorke dimension of DKY = 2 − L1/L3 ≈ 2.154.
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Figure 6. A symmetric hidden chaotic attractor of system (3.4) with a line equilibrium
(green). Initial data: (0.8, 0.8, 0) (blue).

-2.77 -2.21 -1.66 -1.11 -0.56

-1.6

-1.4

-1.2

-1

(a)

-2.77 -2.21 -1.66 -1.11 -0.56

1

1.2

1.4

1.6

(b)

Figure 7. Poincaré maps of system (3.4) on the plane y = 0. Initial conditions: (0.8, 0.8, 0).
(a) dy

dt > 0. (b) dy
dt < 0.

3.1.3. Bifurcation analysis

Consider the following system: 

dx
dt
= y,

dy
dt
= −x + yz,

dz
dt
= c y2 − 0.7 x2 − 3 xy,

(3.5)

where c ∈ [0.8, 1.008] is the coefficient of the nonlinear term y2. It contains systems (3.3) and (3.4) as
special cases.
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For the two initial conditions (±0.8,±0.8, 0), the bifurcation diagram is presented in Figure 8(a) for
c ∈ [0.94, 1.008]. It shows the development of the hidden chaotic motions (with a line equilibrium)
via period-doubling cascades. The periodic orbit undergoes a symmetry-breaking bifurcation around
c ≈ 0.967, transitioning into a saddle orbit, and giving rise to a pair of asymmetric stable periodic
orbits. For each initial data, the first period-doubling bifurcation occurs at c ≈ 0.991. The period and
amplitude of the two asymmetric attractors grow with increasing c until they touch the saddle orbit
and merge into a broader symmetrical hidden chaotic attractor at c ≈ 1.0027 in an attractor merging
crisis. Recall that an attractor merging crisis refers to two or more chaotic attractors merging to form a
single attractor as the critical parameter value is passed [53]. For the initial data
(x(0), y(0), z(0)) = (0.8, 0.8, 0), the variations of Lyapunov exponents and their sum with respect to the
parameter c are shown in Figure 8(b). The Lyapunov exponent spectrum depicted in Figure 8(b)
aligns with the bifurcation diagram illustrated in Figure 8(a). In Figure 8(b), we also plotted the
variation of Lsum = L1 + L2 + L3 with respect to c. For each value of c, the sum Lsum is negative,
indicating that the system is dissipative. Hence, the system is always dissipative for c within the
interval [0.94, 1.008].

(a)

0.94 0.957 0.974 0.991 1.008
-0.8

-0.6

-0.4

-0.2

0

0.2

(b)

Figure 8. Bifurcation diagram and Lyapunov exponent spectrum of system (3.5) with respect
to c. (a) Initial data: (0.8, 0.8, 0) (blue) and (−0.8,−0.8, 0) (red), (b) Initial data: (0.8, 0.8, 0).

3.2. Scenario 2 with a varying: Hidden chaotic dynamics without equilibrium

Letting b = µ = 0 in system (2.1), we have the following system:

dx
dt
= y,

dy
dt
= −x + yz,

dz
dt
= a + (y2 − 0.7 x2 − 3 xy).

(3.6)

When a , 0, it has no equilibrium but does exhibit an invariant straight line along the z-axis. Recall
that when a = 0, the system can have a symmetric pair of hidden chaotic attractors with a line
equilibrium (z-axis).
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For the two initial conditions (±0.8,±0.8, 0), the bifurcation diagram is presented in Figure 9(a)
for a ∈ [−0.02, 0.004]. It shows the development of the hidden chaotic motions (with no equilibrium)
via period-doubling cascades. The left panel of Figure 9 with the change of a is qualitative similar to
Figure 8(a) with the change of c. For the initial data (x(0), y(0), z(0)) = (0.8, 0.8, 0), the variation of
Lyapunov exponents with respect to the parameter a is shown in Figure 9(b). Note that at a ≈ 0.0013,
a symmetric pair of hidden chaotic attractors combine into a symmetrical hidden chaotic attractor. At
a = 0.004, there exists a symmetrical hidden chaotic attractor with a Lyapunov exponent spectrum
of (L1, L2, L3) = (0.1162, 0,−0.7621) and a Kaplan-Yorke dimension of 2.152.

(a)
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(b)

Figure 9. Bifurcation diagram and Lyapunov exponent spectrum of system (3.6) with respect
to a. (a) Initial data: (0.8, 0.8, 0) (blue) and (−0.8,−0.8, 0) (red), (b) Initial data: (0.8, 0.8, 0).

3.3. Scenarios 3 and 4 with a varying: Hidden chaotic dynamics with a stable equilibrium and
self-excited chaotic dynamics with an unstable equilibrium

Letting b = 0.01, µ = 0 in system (2.1), we have the following system:

dx
dt
= y,

dy
dt
= −x + yz,

dz
dt
= (a − 0.01 z) + (y2 − 0.7 x2 − 3 xy),

(3.7)

which has a single equilibrium at P : (0, 0, 100a). According to Corollary 2.2, the equilibrium P is
locally asymptotically stable for a < 0.

For the two initial conditions (±0.8,±0.8, 0), the bifurcation diagram is presented in Figure 10(a)
for a ∈ [−0.03, 0]. It shows the development of chaotic motions via period-doubling cascades. For
the initial data (x(0), y(0), z(0)) = (0.8, 0.8, 0), the variation of Lyapunov exponents with respect to the
parameter a is show in Figure 10(b). From Figure 10, there is a narrow range near a = 0 with a < 0
that corresponds to hidden chaotic dynamics with a stable node-focus.
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(a)
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Figure 10. Bifurcation diagram and Lyapunov exponent spectrum of system (3.7) with
respect to a in the range [−0.03, 0]. (a) Initial data: (0.8, 0.8, 0) (blue) and (−0.8,−0.8, 0)
(red), (b) Initial data: (0.8, 0.8, 0).

For two initial conditions (±0.8,±0.8, 0), the bifurcation diagram is presented in Figure 11 for
a ∈ [0, 2×10(−4)]. When a = 0, from (2.12), we know that the first Lyapunov number a1 of system (3.7)
is positive, thus the origin is unstable. Recalling from Corollary 2.2 that the equilibrium P is a saddle-
focus of index 2 for a ∈ (0, 2× 10(−4)], hence, we have that the chaotic range [0, 2× 10(−4)] corresponds
to self-excited dynamics.

Figure 11. Bifurcation diagram of system (3.7) with respect to a in the range [0, 2 × 10(−4)].
Initial data: (0.8, 0.8, 0) (blue), (−0.8,−0.8, 0) (red).

4. Hidden chaotic bistability with offset boosting

With two initial conditions (∓0.8,∓0.8,−µ), the variations of the average values of the state
variables in systems (2.14) and (2.15) with respect to µ are shown in Figures 12 and 13, respectively.
Since the difference between the two system is caused by a small constant of 0.001, the figures are
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almost the same. For both systems, the average value of z decreases smoothly as the parameter µ
increases.
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(a) Initial data: (−0.8,−0.8,−µ)
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(b) Initial data: (0.8, 0.8,−µ)

Figure 12. Variation of the average values of the state variables with respect to µ for
different initial conditions in system (2.14). (a) Initial data: (−0.8,−0.8,−µ), (b) Initial data:
(0.8, 0.8,−µ).
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(a) Initial data: (−0.8,−0.8,−µ)
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(b) Initial data: (0.8, 0.8,−µ)

Figure 13. Variation of the average values of the state variables with respect to µ for
different initial conditions in system (2.15). (a) Initial data: (−0.8,−0.8,−µ), (b) Initial data:
(0.8, 0.8,−µ).

Let (L(k)
1 , L

(k)
2 , L

(k)
3 ), k = 1, 2, be the Lyapunov exponent spectra of systems (2.14) and (2.15),

respectively. For each k, we have L(k)
1 > 0, L(k)

2 = 0, and L(k)
3 < 0. For 1 ≤ k ≤ 2, the variations of L(k)

1
and L(k)

3 with respect to the parameter µ are shown in Figure 14.
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Figure 14. Lyapunov exponents of systems (2.14) and (2.15) with respect to the parameter
µ. Initial conditions: (0.8, 0.8,−µ). (a) L(k)

1 , k = 1, 2, (b) L(k)
3 , k = 1, 2.

Figure 14 indicates that as the initial conditions vary with the parameter µ, both of these systems
exhibit chaotic dynamics. For system (2.14), there exists a symmetric pair of hidden chaotic attractors
accompanied by an infinite number of equilibrium points. As for system (2.15), there also exists a
symmetric pair of hidden chaotic attractors, but there are no equilibrium points. As shown in panel (a)
of Figure 14, the largest Lyapunov exponent L(2)

1 (red curve) of system (2.15) consistently exceeds the
largest Lyapunov exponent L(1)

1 (blue curve) of system (2.14), indicating that system (2.15)
demonstrates stronger chaotic dynamics than system (2.14).

For systems (2.14) and (2.15) with µ = −5, 5, the coexistence of hidden chaotic attractors is
illustrated in Figures 15 and 16, respectively.

(a) µ = −5 (b) µ = 5

Figure 15. A symmetric pair of hidden chaotic attractors in system (2.14) for µ = −5 and
µ = 5.
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(a) µ = −5 (b) µ = 5

Figure 16. A symmetric pair of hidden chaotic attractors in system (2.15) for µ = −5 and
µ = 5.

5. Conclusions

In this paper, we have conducted a comprehensive investigation of a novel chameleon system,
examining its symmetry, dissipation, stability analysis, Hopf bifurcation, and various chaotic
dynamics. The parameter µ serves as both the Hopf bifurcation parameter and the offset boosting
parameter. The other parameters are also critical control parameters, with variation of which, the
system undergoes period-doubling bifurcations leading to various types of chaos, including hidden
chaos and self-excited chaos, with hidden chaos being predominant. By offset boosting the variable z,
we also investigated the coexistence of hidden chaotic attractors. The results of this study enrich our
understanding of the dynamical behavior of chameleon systems, providing important insights for
research in related fields such as information security, cryptography, and nonlinear dynamics. In the
future, it is hoped that there will be studies about chameleon systems subjected to small random
perturbations.
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