In this paper, we consider the incompressible chemotaxis-Navier-Stokes equations with logistic source in spatial dimension two. We first show a blow-up criterion and then establish the global existence of classical solutions to the system for the Cauchy problem under some rough conditions on the initial data.
Citation: Yina Lin, Qian Zhang, Meng Zhou. Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source[J]. AIMS Mathematics, 2022, 7(4): 7212-7233. doi: 10.3934/math.2022403
In this paper, we consider the incompressible chemotaxis-Navier-Stokes equations with logistic source in spatial dimension two. We first show a blow-up criterion and then establish the global existence of classical solutions to the system for the Cauchy problem under some rough conditions on the initial data.
[1] | N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X |
[2] | X. Cao, J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Dif., 55 (2016), 107. https://doi.org/10.1007/s00526-016-1027-2 doi: 10.1007/s00526-016-1027-2 |
[3] | M. Chae, K. Kang, J. Lee, On existence of the smooth solutions to the coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33 (2013), 2271–2297. https://doi.org/10.3934/dcds.2013.33.2271 doi: 10.3934/dcds.2013.33.2271 |
[4] | M. Chae, K. Kang, J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Commun. Part. Diff. Eq., 39 (2014), 1205–1235. https://doi.org/10.1080/03605302.2013.852224 doi: 10.1080/03605302.2013.852224 |
[5] | R. Danchin, A few remarks on the Camassa-Holm equation, Differ. Integral Equ., 14 (2001), 953–988 |
[6] | R. Duan, A. Lorz, P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Commun. Part. Diff. Eq., 35 (2010), 1635–1673. https://doi.org/10.1080/03605302.2010.497199 doi: 10.1080/03605302.2010.497199 |
[7] | R. Duan, X. Li, Z. Xiang, Global existence and large time behavior for a two dimensional chemotaxis-Navier-Stokes system, J. Differential Equations 263 (2017), 6284–6316. https://doi.org/10.1016/j.jde.2017.07.015 doi: 10.1016/j.jde.2017.07.015 |
[8] | R. Duan, Z. Xiang, A note on global existence for the chemotaxis Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, 2014 (2014), 1833–1852. https://doi.org/10.1093/imrn/rns270 doi: 10.1093/imrn/rns270 |
[9] | K. Fujie, M. Winkler, T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56–71. https://doi.org/10.1016/j.na.2014.06.017 doi: 10.1016/j.na.2014.06.017 |
[10] | X. He, S. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2) (2016), 970–982. https://doi.org/10.1016/j.jmaa.2015.12.058 doi: 10.1016/j.jmaa.2015.12.058 |
[11] | J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499–1527. https://doi.org/10.3934/dcdsb.2015.20.1499 doi: 10.3934/dcdsb.2015.20.1499 |
[12] | J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26 (2016), 2071–2109. https://doi.org/10.1142/S021820251640008X doi: 10.1142/S021820251640008X |
[13] | J. G. Liu, A. Lorz, A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré. Anal. Non linéare, 28 (2011), 643–652. https://doi.org/10.1016/j.anihpc.2011.04.005 doi: 10.1016/j.anihpc.2011.04.005 |
[14] | Y. Lin, Q. Zhang, Global well-posedness for the 2D chemotaxisfluid system with logistic source, Appl. Anal., (2020). https://doi.org/10.1080/00036811.2020.1767287 |
[15] | C. Miao, J. Wu, Z. Zhang, Littlewood-Paley Theory and Applications to Fluid Dynamics Equations, Monographs on Modern Pure Mathematics, No. 142, Science Press, Beijing, 2012. |
[16] | Y. Tao, M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1901–1914. https://doi.org/10.3934/dcds.2012.32.1901 doi: 10.3934/dcds.2012.32.1901 |
[17] | Y. Tao, M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555–2573. https://doi.org/10.1007/s00033-015-0541-y doi: 10.1007/s00033-015-0541-y |
[18] | Y. Tao, M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel- Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), 138. |
[19] | I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277–2282. https://doi.org/10.1073/pnas.0406724102 doi: 10.1073/pnas.0406724102 |
[20] | Y. Wang, M. Winkler, Z. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2018). https://doi.org/10.2422/2036-2145.201603_004 |
[21] | Y. Wang, Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578–7609. https://doi.org/10.1016/j.jde.2015.08.027 doi: 10.1016/j.jde.2015.08.027 |
[22] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel, model, J. Differential Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008 |
[23] | M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel, system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020 |
[24] | M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777–2793. https://doi.org/10.3934/dcdsb.2017135 doi: 10.3934/dcdsb.2017135 |
[25] | M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Part. Diff. Eq., 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426 |
[26] | M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Commun. Part. Diff. Eq., 37 (2012), 319–351. https://doi.org/10.1080/03605302.2011.591865 doi: 10.1080/03605302.2011.591865 |
[27] | M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier–Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455–487. https://doi.org/10.1007/s00205-013-0678-9 doi: 10.1007/s00205-013-0678-9 |
[28] | M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329–1352. https://doi.org/10.1016/j.anihpc.2015.05.002 doi: 10.1016/j.anihpc.2015.05.002 |
[29] | M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067–3125. https://doi.org/10.1090/tran/6733 doi: 10.1090/tran/6733 |
[30] | M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339–1401. https://doi.org/10.1016/j.jfa.2018.12.009 doi: 10.1016/j.jfa.2018.12.009 |
[31] | M. Winkler, Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction, Commun. Math. Phys., 389 (2022), 439–489. https://doi.org/10.1007/s00220-021-04272-y doi: 10.1007/s00220-021-04272-y |
[32] | J. Wu and C. Wu, A note on the global existence of a two-dimensional chemotaxis-Navier-Stokes system, Appl. Anal., 98 (2019), 1224–1235. https://doi.org/10.1080/00036811.2017.1419199 doi: 10.1080/00036811.2017.1419199 |
[33] | Q. Zhang, Blowup criterion of smooth solutions for the incompressible chemotaxis-Euler equations, Z. Angew. Math. Mech., 96 (2016), 466–476. https://doi.org/10.1002/zamm.201500040 doi: 10.1002/zamm.201500040 |
[34] | Q. Zhang, X. Zheng, Global well-posedness for the two-dimensional incompressible chemptaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078–3105. https://doi.org/10.1137/130936920 doi: 10.1137/130936920 |
[35] | X. Zhao, S. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., 68 (2017), 2. https://doi.org/10.1007/s00033-016-0749-5 doi: 10.1007/s00033-016-0749-5 |