Research article

Global classical solution of the fractional Nernst-Planck-Poisson-Navier- Stokes system in $ \mathbb{R}^{3} $

  • Received: 28 March 2024 Revised: 05 May 2024 Accepted: 10 May 2024 Published: 20 May 2024
  • MSC : 35A01, 35A09, 35Q92, 76D05

  • In this paper, we consider a fractional Nernst-Planck-Poisson-Navier-Stokes system in $ \mathbb{R}^{3} $. First, we obtain a priori estimates by using energy estimates. Then, we construct an iterative solution sequence by solving the approximate problem and obtaining the local existence and uniqueness of the classical solution. Finally, combining the local existence with a priori estimates, the global existence and uniqueness of the classical solution with small initial data are obtained.

    Citation: Zihang Cai, Chao Jiang, Yuzhu Lei, Zuhan Liu. Global classical solution of the fractional Nernst-Planck-Poisson-Navier- Stokes system in $ \mathbb{R}^{3} $[J]. AIMS Mathematics, 2024, 9(7): 17359-17385. doi: 10.3934/math.2024844

    Related Papers:

  • In this paper, we consider a fractional Nernst-Planck-Poisson-Navier-Stokes system in $ \mathbb{R}^{3} $. First, we obtain a priori estimates by using energy estimates. Then, we construct an iterative solution sequence by solving the approximate problem and obtaining the local existence and uniqueness of the classical solution. Finally, combining the local existence with a priori estimates, the global existence and uniqueness of the classical solution with small initial data are obtained.



    加载中


    [1] M. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E, 70 (2004), 021506. https://doi.org/10.1103/PhysRevE.70.021506 doi: 10.1103/PhysRevE.70.021506
    [2] M. Chae, K. Kang, J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Cont. Dyn., 33 (2013), 2271–2297. https://doi.org/10.3934/dcds.2013.33.2271 doi: 10.3934/dcds.2013.33.2271
    [3] A. Claverie, L. Laânab, C. Bonafos, C. Bergaud, A. Martinez, D. Mathiot, On the relation between dopant anomalous diffusion in Si and end-of-range defects, Nucl. Instrum. Meth. B, 96 (1995), 202–209. https://doi.org/10.1016/0168-583X(94)00483-8 doi: 10.1016/0168-583X(94)00483-8
    [4] J. Fan, F. Li, G. Nakamura, Regularity criteria for a mathematical model for the deformation of electrolyte droplets, Appl. Math. Lett., 26 (2013), 494–499. https://doi.org/10.1016/j.aml.2012.12.003 doi: 10.1016/j.aml.2012.12.003
    [5] W. Fang, K. Ito, On the time-dependent drift-diffusion model for semiconductors, J. Differ. Equations, 117 (1995), 245–280. https://doi.org/10.1006/jdeq.1995.1054 doi: 10.1006/jdeq.1995.1054
    [6] H. Gong, C. Wang, X. Zhang, Partial regularity of suitable weak solutions of the Navier-Stokes-Planck-Nernst-Poisson equation, SIAM J. Math. Anal., 53 (2021), 3306–3337. https://doi.org/10.1137/19M1292011 doi: 10.1137/19M1292011
    [7] R. Granero-Belinchón, On a drift-diffusion system for semiconductor devices, Ann. Henri Poincaré, 17 (2016), 3473–3498. https://doi.org/10.1007/s00023-016-0493-6 doi: 10.1007/s00023-016-0493-6
    [8] J. Jerome, Analytical approaches to charge transport in a moving medium, Transport Theor. Stat., 31 (2002), 333–366. https://doi.org/10.1081/TT-120015505 doi: 10.1081/TT-120015505
    [9] J. Jerome, R. Sacco, Global weak solutions for an incompressible charged fluid with multi-scale couplings: initial-boundary-value problem, Nonlinear Anal.-Theor., 71 (2009), e2487–e2497. https://doi.org/10.1016/j.na.2009.05.047 doi: 10.1016/j.na.2009.05.047
    [10] A. Jüngel, Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Mod. Meth. Appl. S., 5 (1995), 497–518. https://doi.org/10.1142/S0218202595000292 doi: 10.1142/S0218202595000292
    [11] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pur. Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [12] R. Kobayashi, S. Kawashima, Decay estimates and large time behavior of solutions to the drift-diffusion system, Funkc. Ekvacioj, 51 (2008), 371–394. https://doi.org/10.1619/fesi.51.371 doi: 10.1619/fesi.51.371
    [13] M. Kurokiba, T. Ogawa, Well-posedness for the drift-diffusion system in $L^{p}$ arising from the semiconductor device simulation, J. Math. Anal. Appl., 342 (2008), 1052–1067. https://doi.org/10.1016/j.jmaa.2007.11.017 doi: 10.1016/j.jmaa.2007.11.017
    [14] M. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal., 5 (1974), 597–612. https://doi.org/10.1137/0505061 doi: 10.1137/0505061
    [15] L. Nirenberg, On elliptic partial differential equations, In: Il principio di minimo e sue applicazioni alle equazioni funzionali, Berlin: Springer, 2011, 1–48. https://doi.org/10.1007/978-3-642-10926-3_1
    [16] T. Ogawa, M. Yamamoto, Asymptotic behavior of solutions to drift-diffusion system with generalized dissipation, Math. Mod. Meth. Appl. S., 19 (2009), 939–967. https://doi.org/10.1142/S021820250900367X doi: 10.1142/S021820250900367X
    [17] I. Rubinstein, Electro-diffusion of ions, Philadelphia: Society for Industrial and Applied Mathematics, 1990. https://doi.org/10.1137/1.9781611970814
    [18] M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Mod. Meth. Appl. S., 19 (2009), 993–1014. https://doi.org/10.1142/S0218202509003693 doi: 10.1142/S0218202509003693
    [19] L. Tong, Z. Tan, Optimal decay rates of the solution for generalized Poisson-Nernst-Planck-Navier-Stokes equations in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 72 (2021), 200. https://doi.org/10.1007/s00033-021-01627-2 doi: 10.1007/s00033-021-01627-2
    [20] I. Tuval, L. Cisneros, C. Dombrowski, C. Wolgemuth, J. Kessler, R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci., 102 (2005), 2277–2282. https://doi.org/10.1073/pnas.0406724102 doi: 10.1073/pnas.0406724102
    [21] W. Van Roosbroeck, Theory of the flow of electrons and holes in germanium and other semiconductors, Bell System Technical Journal, 29 (1950), 560–607. https://doi.org/10.1002/j.1538-7305.1950.tb03653.x doi: 10.1002/j.1538-7305.1950.tb03653.x
    [22] Z. Zhang, Z. Yin, Global well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in dimension two, Appl. Math. Lett., 40 (2015), 102–106. https://doi.org/10.1016/j.aml.2014.10.002 doi: 10.1016/j.aml.2014.10.002
    [23] J. Zhao, C. Deng, S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces, J. Math. Phys., 51 (2010), 093101. https://doi.org/10.1063/1.3484184 doi: 10.1063/1.3484184
    [24] J. Zhao, C. Deng, S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, Differ. Equat. Appl., 3 (2011), 427–448. https://doi.org/10.7153/dea-03-27 doi: 10.7153/dea-03-27
    [25] J. Zhao, T. Zhang, Q. Liu, Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space, Discrete Cont. Dyn., 35 (2015), 555–582. https://doi.org/10.3934/dcds.2015.35.555 doi: 10.3934/dcds.2015.35.555
    [26] S. Zhu, Z. Liu, L. Zhou, Global existence and asymptotic stability of the fractional chemotaxis-fluid system in $\mathbb{R}^{3}$, Nonlinear Analysis, 183 (2019), 149–190. https://doi.org/10.1016/j.na.2019.01.014 doi: 10.1016/j.na.2019.01.014
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(688) PDF downloads(91) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog