Research article

Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique

  • Received: 05 February 2024 Revised: 19 April 2024 Accepted: 26 April 2024 Published: 20 May 2024
  • MSC : 35-XX, 65-XX, 74S30

  • In this article, a collocation technique based on quintic trigonometric B-spline (QTB-spline) functions was presented for homogeneous as well as the nonhomogeneous extended Fisher-Kolmogorov (F-K) equation. This technique was used for space integration, while the time-derivative was discretized by the usual finite difference method (FDM). To handle the nonlinear term, the process of Rubin-Graves (R-G) type linearization was employed. Three examples of the homogeneous extended F-K equation and one example of the nonhomogeneous extended F-K equation were considered for the analysis. Stability analysis and numerical convergence were also discussed. It was found that the discretized system of the extended F-K equation was unconditionally stable, and the projected technique was second order accurate in space. The consequences were portrayed graphically to verify the accuracy of the outcomes and performance of the projected technique, and a relative investigation was accomplished graphically. The figured results were found to be extremely similar to the existing results.

    Citation: Shafeeq Rahman Thottoli, Mohammad Tamsir, Mutum Zico Meetei, Ahmed H. Msmali. Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique[J]. AIMS Mathematics, 2024, 9(7): 17339-17358. doi: 10.3934/math.2024843

    Related Papers:

  • In this article, a collocation technique based on quintic trigonometric B-spline (QTB-spline) functions was presented for homogeneous as well as the nonhomogeneous extended Fisher-Kolmogorov (F-K) equation. This technique was used for space integration, while the time-derivative was discretized by the usual finite difference method (FDM). To handle the nonlinear term, the process of Rubin-Graves (R-G) type linearization was employed. Three examples of the homogeneous extended F-K equation and one example of the nonhomogeneous extended F-K equation were considered for the analysis. Stability analysis and numerical convergence were also discussed. It was found that the discretized system of the extended F-K equation was unconditionally stable, and the projected technique was second order accurate in space. The consequences were portrayed graphically to verify the accuracy of the outcomes and performance of the projected technique, and a relative investigation was accomplished graphically. The figured results were found to be extremely similar to the existing results.



    加载中


    [1] J. Belmonte-Beitia, G. F. Calvo, V. M. Pérez-García, Effective particle methods for Fisher-Kolmogorov equations: Theory and applications to brain tumor dynamics, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3267–3283. https://doi.org/10.1016/j.cnsns.2014.02.004 doi: 10.1016/j.cnsns.2014.02.004
    [2] P. Drábek, P. Takáč, New patterns of travelling waves in the generalized Fisher-Kolmogorov equation, Nonlinear Differ. Equ. Appl., 23 (2016). https://doi.org/10.1007/s00030-016-0365-2
    [3] S. Liu, R. Z. Zhang, Q. Y. Wang, X. Y. He, Sliding mode synchronization between uncertain Watts-Strogatz small-world spatiotemporal networks, Appl. Math. Mech.-Engl.Ed., 41 (2020), 1833–1846. https://doi.org/10.1007/s10483-020-2686-6 doi: 10.1007/s10483-020-2686-6
    [4] P. Drábek, M. Zahradníková, Traveling waves for generalized Fisher-Kolmogorov equation with discontinuous density dependent diffusion, Math. Method. Appl. Sci., 46 (2023), 12064–12086. https://doi.org/10.1002/mma.8683 doi: 10.1002/mma.8683
    [5] G. Z. Zhu, Experiments on director waves in nematic liquid crystals, Phys. Rev. Lett., 49 (1982), 1332. https://doi.org/10.1103/PhysRevLett.49.1332 doi: 10.1103/PhysRevLett.49.1332
    [6] Z. Zhang, Z. R. Zou, E. Kuhl, G. E. Karniadakis, Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression, Comput. Method. Appl. Mech. Eng., 419 (2024), 116647. https://doi.org/10.1016/j.cma.2023.116647 doi: 10.1016/j.cma.2023.116647
    [7] A. Viguerie, M. Grave, G. F. Barros, G. Lorenzo, A. Reali, A. L. G. A. Coutinho, Data-Driven simulation of Fisher-Kolmogorov tumor growth models using dynamic mode decomposition, J Biomech. Eng., 144 (2022), 121001. https://doi.org/10.1115/1.4054925 doi: 10.1115/1.4054925
    [8] A. Başhan, Y. Ucar, N. M. Yağmurlu, A. Esen, Numerical solutions for the fourth order extended Fisher-Kolmogorov equation with high accuracy by differential quadrature method, Sigma J. Eng. Nat. Sci., 9 (2018), 273–284.
    [9] A. Melaibari, S. A. Mohamed, A. E. Assie, R. A. Shanab, M. A. Eltaher, Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints, Mathematics, 10 (2022), 4784. https://doi.org/10.3390/math10244784 doi: 10.3390/math10244784
    [10] R. C. Mittal, S. Dahiya, A study of quintic B-spline based differential quadrature method for a class of semi-linear Fisher-Kolmogorov equations, Alex. Eng. J., 55 (2016), 2893–2899. https://doi.org/10.1016/j.aej.2016.06.019 doi: 10.1016/j.aej.2016.06.019
    [11] R. C. Mittal, G. Arora, Quintic B-spline collocation method for numerical solution of the extended Fisher-Kolmogorov equation, Int. J. Appl. Math Mech., 6 (2010), 74–85.
    [12] R. Noureen, M. N. Naeem, D. Baleanu, P. O. Mohammed, M. Y. Almusawa, Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation, AIMS Math., 8 (2023), 25343–25370. https://doi.org/10.3934/math.20231293 doi: 10.3934/math.20231293
    [13] M. Vivas-Cortez, M. J. Huntul, M. Khalid, M. Shafiq, M. Abbas, M. K. Iqbal, Application of an extended cubic B-Spline to find the numerical solution of the generalized nonlinear time-fractional Klein-Gordon equation in mathematical physics, Computation, 12 (2024), 80. https://doi.org/10.3390/computation12040080 doi: 10.3390/computation12040080
    [14] M. P. Alam, D. Kumar, A. Khan, Trigonometric quintic B-spline collocation method for singularly perturbed turning point boundary value problems, Int. J. Comput. Math., 98 (2021), 1029–1048. https://doi.org/10.1080/00207160.2020.1802016 doi: 10.1080/00207160.2020.1802016
    [15] B. Karaagac, A. Esen, K. M. Owolabi, E. Pindza, A trigonometric quintic B-Spline basis collocation method for the KdV-Kawahara equation, Numer. Analys. Appl., 16 (2023), 216–228. https://doi.org/10.1134/S1995423923030035 doi: 10.1134/S1995423923030035
    [16] Y. Uçar, N. M. Yağmurlu, M. K. Yiğit, Numerical solution of the coupled Burgers equation by trigonometric B-spline collocation method, Math. Meth. Appl. Sci., 46 (2023), 6025–6041. https://doi.org/10.22541/au.163257144.44242309/v1 doi: 10.22541/au.163257144.44242309/v1
    [17] L. J. T. Doss, N. Kousalya, A finite pointset method for extended Fisher-Kolmogorov equation based on mixed formulation, Int. J. Comput. Meth., 18 (2021), 2050019. https://doi.org/10.1142/S021987622050019X doi: 10.1142/S021987622050019X
    [18] S. Kumar, R. Jiwari, R. C. Mittal, Radial basis functions based meshfree schemes for the simulation of non-linear extended Fisher-Kolmogorov model, Wave Motion, 109 (2022), 102863. https://doi.org/10.1016/j.wavemoti.2021.102863 doi: 10.1016/j.wavemoti.2021.102863
    [19] J. Lin, Y. T. Xu, S. Reutskiy, J. Lu, A novel Fourier-based meshless method for (3+1)-dimensional fractional partial differential equation with general time-dependent boundary conditions, Appl. Math. Lett., 135 (2023), 108441. https://doi.org/10.1016/j.aml.2022.108441 doi: 10.1016/j.aml.2022.108441
    [20] Y. H. Zhang, J. Lin, S. Reutskiy, A novel Gaussian-cubic-based backward substitution method using symmetric variable shape parameter, Eng. Anal. Bound. Elem., 155 (2023), 1069–1081. https://doi.org/10.1016/j.enganabound.2023.07.026 doi: 10.1016/j.enganabound.2023.07.026
    [21] M. Abbaszadeh, M. Dehghan, A. Khodadadian, C. Heitzinger, Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher-Kolmogorov equation, Comput. Math. Appl., 80 (2020), 247–262. https://doi.org/10.1016/j.camwa.2020.03.014 doi: 10.1016/j.camwa.2020.03.014
    [22] N. H. Sweilam, D. M. ElSakout, M. M. Muttardi, Numerical solution for stochastic extended Fisher-Kolmogorov equation, Chaos Soliton. Fract., 151 (2021), 111213. https://doi.org/10.1016/j.chaos.2021.111213 doi: 10.1016/j.chaos.2021.111213
    [23] K. S. Nisar, S. A. M. Alsallami, M. Inc, M. S. Iqbal, M. Z. Baber, M. A.Tarar, On the exact solutions of nonlinear extended Fisher-Kolmogorov equation by using the He's variational approach, AIMS Math., 7 (2022), 13874–13886. https://doi.org/10.3934/math.2022766 doi: 10.3934/math.2022766
    [24] P. Danumjaya, A. K. Pani, Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation, Comput. Appl. Math., 174 (2005), 101–117. https://doi.org/10.1016/j.cam.2004.04.002 doi: 10.1016/j.cam.2004.04.002
    [25] L. J. T. Doss, A. P. Nandini, An $H^1$-Galerkin mixed finite element method for the extended Fisher-Kolmogorov equation, Int. J. Numer. Anal. Model. Ser. B, 3 (2012), 460–485.
    [26] P. Danumjaya, A. K. Pani, Numerical methods for the extended Fisher-Kolmogorov (EFK) equation, Int. J. Numer. Anal. Mod., 3 (2006), 186–210.
    [27] H. Luo, Global attractor of the extended Fisher-Kolmogorov equation in $H^k$ spaces, Bound. Value Probl., 2011 (2011), 1–10. https://doi.org/10.1186/1687-2770-2011-39 doi: 10.1186/1687-2770-2011-39
    [28] N. Khiari, K. Omrani, Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions, Comput. Math. Appl., 62 (2011), 4151–4160. https://doi.org/10.1016/j.camwa.2011.09.065 doi: 10.1016/j.camwa.2011.09.065
    [29] T. Kadri, K. Omrani, A second-order accurate difference scheme for an extended Fisher-Kolmogorov equation, Comput. Math. Appl., 61 (2011), 451–459. https://doi.org/10.1016/j.camwa.2010.11.022 doi: 10.1016/j.camwa.2010.11.022
    [30] A. Başhan, Quartic B-spline differential quadrature method for solving the extended Fisher-Kolmogorov equation, Erzincan Univ. J. Sci. Tech., 12 (2019), 56–62.
    [31] B. R. Ju, W. Z. Qu, Three-dimensional application of the meshless generalized finite difference method for solving the extended Fisher-Kolmogorov equation, Appl. Math. Lett., 136 (2023), 108458. https://doi.org/10.1016/j.aml.2022.108458 doi: 10.1016/j.aml.2022.108458
    [32] W. X. Sun, H. D. Ma, W. Z. Qu, A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity, Appl. Math. Lett., 148 (2024), 108868. https://doi.org/10.1016/j.aml.2023.108868 doi: 10.1016/j.aml.2023.108868
    [33] R. M. Hornreich, M. Luban, S. Shtrikman, Critical Behavior at the Onset of $\stackrel{\ensuremath{\rightarrow}}{\mathrm{k}}$-Space Instability on the $\ensuremath{\lambda}$ Line, Phys. Rev. Lett., 35 (1975), 1678.
    [34] S. G. Rubin, R. A. G. Jr, A cubic spline approximation for problems in fluid mechanics, Tech. Rep., 1975.
    [35] N. Dhiman, M. Tamsir, A collocation technique based on modified form of trigonometric cubic B-spline basis functions for Fisher's reaction-diffusion equation, Multidiscip. Model. Ma., 14 (2018), 923–939. https://doi.org/10.1108/MMMS-12-2017-0150 doi: 10.1108/MMMS-12-2017-0150
    [36] J. C. Strikwerda, Finite difference schemes and partial differential equations, Society for Industrial and Applied Mathematic, 2004.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(713) PDF downloads(65) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog