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1. Introduction

Nonlinear partial differential equations (PDEs) are extremely significant in real-world applications,
which is why they play a significant part in the modeling of natural events. Most real-world problems
can be characterized by nonlinear PDEs. However, analytical methods are unable to resolve some of
these problems. Several numerical methods have been applied to solve these equations.

The Fisher Kolmogorov (F-K) models have been extensively utilized in the study of physical,
material, and biological systems [1]. Some of these applications include, for instance, pattern
formation [2], spatiotemperal chaos [3], traveling waves phenomena [4], liquid crystals domain walls
propagation [5], reaction model for Alzheimer’s disease [6], and tumor growth dynamics [7].

A cubic B-spline differential quadrature technique (DQM) was applied to simulate the fourth-order
extended F-K equation in [8]. Error norms were used to assess the accuracy of the method. DQM and
discretization were used to solve PDEs in [9]. Authors of [10, 11] utilized differential quadrature and
collocation methods based on quintic B-spline (QB) functions, i.e., QBDQM and QBCM, respectively,
to simulate a numerically extended F-K (EFK) model. An analysis was conducted on stability, rate of
convergence, and error norms. A numerical approach using trigonometric cubic B-spline functions was
introduced to solve the time fractional gas dynamics equation was introduced in [12]. The generalized
nonlinear time-fractional Klein-Gordon equation (TFKGE) was solved numerically using extended
cubic B-spline (ECBS) functions in [13].

In [14], a trigonometric quintic B-spline method is employed to solve singularly perturbed boundary
value problems, proving its ease and cost-effectiveness. A recent study used a trigonometric quintic
B-spline method to solve the Korteweg-de Vries (KdV)-Kawahar equation, which has time-dependent
parameters [15]. The numerical results obtained from this method were shown to be both effective
and efficient. The trigonometric cubic and quintic B-splines are utilized to simulate the Burgers
equation [16]. The accuracy of the outcome is evaluated by error norms and compared to the available
approximate solutions. Results showed that the approach is exceptionally effective in resolving coupled
Burgers’ equation (cBE). A messless method (finite pointset) was applied in [17], to numerically solve
the EFK equation. In [18], mesh-free numerical techniques were used based on DQM and radial
basis functions (RBF) to simulate the F-K extended model. In [19], the authors used the Fourier-based
meshless approach to solve a (3+1)-dimensional PDE. In [20], a Gaussian-cubic backward substitution
method was utilized to solve nonlinear and linear problems in two dimensions and three dimensions
with an irregular domain. The method’s computational accuracy was effectively demonstrated.

The authors of [21] adopted element-free Galerkin interpolation to solve EFK numerically. In [22],
the study on stochastic EFK was expanded by employing the numerical technique of Euler-Maruyama.
In [23], He’s variational method was adopted to study the solitons and period wave solution for
EFK. This method simplifies calculation by reducing the order of the equation compared to previous
methods. The authors of [24] proposed an approach to solve the EFK problem utilizing 2nd order
splitting and orthogonal cubic spline collocation. Applying an H1-Galerkin mixed finite element (H1-
GMFE) method to the extended F-K equation via the splitting method, [25] derived optimal order
error estimates. The authors of [26] utilized the C1-conforming finite element method to estimate
error optimally for two-dimensional EFK equations (semi and wholly discrete). The authors of [27]
analyzed the solution to the EFK equation in terms of its long-term behavior. In [28], the author
presented a Crank-Nicolson finite difference scheme (CNFDS) to solve the EFK problem in two space
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dimensions with Dirichlet boundary conditions. In [29], the stability of the CNFDS in L∞ discrete
norm for the EFK equation was investigated. The numerial solution to the EFK equation was derived
in [30] using quartic B-spline based DQM (QAB-DQM). A novel meshless local collocation approach
for numerically solving the 3D extended EFK equation was proposed in [31]. To discretize the time
and spatial derivatives of the EFK equation, the second-order Crank-Nicolson scheme and meshless
generalized finite difference method (GFDM) were used. Furthermore, in [32], a hybrid numerical
method was introduced to address 2D nonlinear transient heat conduction concerns with temperature-
dependent conductivity. They used Krylov deferred correction (KDC) for temporal discretization
and GFDM for spatial discretization. In light of the aforementioned study, we propose a quintic
trigonometric B-spline collocation technique to numerically simulate the extended F-K equation, which
is expressed as:

ut + γuxxxx − uxx + u3 − u = f (x, t), x ∈ [a, b], t ∈ [0,T ], (1.1)

subject to initial condition (IC)
u(x, 0) = φ(x), (1.2)

and boundary condition (BC)

u(a, t) = ψ1(t), u(b, t) = ψ2(t),
uxx(a, t) = 0, uxx(b, t) = 0. (1.3)

If γ = 0 in (1.1), we obtain the standard F-K equation, and its generalization is given as follows:

ut = uxx + u − u3. (1.4)

When approaching Lifshitz points, [33] phase transitions require the inclusion of the fourth-order
derivative due to the necessity of including higher-order gradient factors in the energy-free functional.
The EFK equation appears at the phase transition Lifshitz point, and the gradient systems evolution
equation is given as follows:

I(u) =

∫ [
γ

2
(u′′)2 +

β

2
(u′)2 + F(u)

]
dx, (1.5)

where F is the double-well potential and is given as follows:

F(u) =
1
4

(1 − u2)2. (1.6)

If we choose β = 1, then we obtain the EFK equation.
For the structure of this paper: Section 2 includes the preliminaries about the quadratic

trigonometric B-spline (QTB-spline) functions. In Section 3, we present the discretization of the
extended F-K equation. Section 4 shows the stability analysis of the discretized system of the F-K
equation using the von Neumann method. Section 5 shows the simulation of the F-K equation through
numerical examples and compares the accuracy of the results. The conclusions are given in Section 6.
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2. QTB-spline basis functions

The problem domain x ∈ [a, b] is uniformly partitioned into a mesh of length h = ∆x = b−a
M , using

the knots xi = a + ih, i = 0, 1, ...,M, ensuring that a = x0 < x1 < x2 < . . . < xM = b. Now, we specify
the QTB-spline functions Q̂i(x) for i = −2,−1, 0, ...,M+ as follows:

Q̂i(x) =
1
θ



ρ5(xi−3), x ∈ [xi−3, xi−2),

−ρ(xi−1)ρ4(xi−3) − ρ(xi)ρ(xi−2)ρ3(xi−3)
−ρ(xi+1)ρ2(xi−3)ρ2(xi−2)−
ρ(xi+2)ρ(xi−3)ρ3(xi−2) − ρ4(xi−2)ρ(xi−3), x ∈ [xi−2, xi−1),

ρ2(xi)ρ3(xi−3) + ρ2(xi−3)[ρ(xi)ρ(xi+1)ρ2(xi−3)ρ(xi−2)
+ρ2(xi+1)ρ(xi−1)]+ρ(xi+2) [ρ2(xi)ρ(xi+2)ρ(xi−3)ρ2(xi−2)
+ρ(xi+1)ρ(xi−3)ρ(xi−2)ρ(xi−1)]+
ρ2(xi+2)ρ(xi−3)ρ2(xi−1)
+ρ(xi+3)ρ(xi+2)ρ(xi−2)ρ2(xi−1) + ρ3(xi−1)ρ2(xi+3), x ∈ [xi−1, xi),

−ρ3(xi+1)ρ2(xi−3) − ρ(xi−3)[ρ(xi+2)ρ2(xi+1)ρ(xi−3)ρ(xi−2)
−ρ2(xi+2)ρ(xi+1)ρ(xi−1)]−ρ3(xi+2)ρ(xi−3)ρ(xi)
−ρ(xi+3)[ρ2(xi−1)ρ2(xi−2)ρ(xi+3)+
ρ2(xi+1)ρ(xi+2)ρ(xi−2)ρ(xi−1)
+ρ(xi−2)ρ2(xi+2)ρ(xi)] −ρ2(xi+3)[ρ2(xi−1)ρ(xi+1)
+ρ(xi−1)ρ(xi+2)ρ(xi)] −ρ3(xi+3)ρ2(xi), x ∈ [xi, xi+1),

ρ4(xi+2)ρ(xi−3) + ρ(xi+3)ρ3(xi+2)ρ(xi−2)+
ρ2(xi+3)ρ2(xi+2)ρ(xi−1)
+ρ(xi)ρ(xi+2)ρ3(xi+3) + ρ(xi+1)ρ4(xi+3), x ∈ [xi+1, xi+2),

−ρ5(xi+3), x ∈ [xi+2, xi+3),

0, otherwise,

(2.1)

where ρ(xi) = sin( x−xi
2 ), i = 0, 1, ..,M, and θ = sin(2.5h)sin(2h)sin(1.5h)sin(h)sin(0.5h).

The QTB-spline functions {QT−2,QT−1, ...,QTM+1,QTM+2} form a basis over the problem domain.
Table 1 displays QTB-spline values and derivatives at knots.

Table 1. Q̂i(x) and its derivatives at knots.

x xi−2 xi−1 xi xi+1 xi+2

Q̂i(x) τ1 τ2 τ3 τ2 τ1

Q̂′i(x) τ4 τ5 0 −τ5 −τ4

Q̂′′i (x) τ6 τ7 τ8 τ7 τ6

Q̂′′′i (x) τ9 τ10 0 −τ10 −τ9

Q̂iv
i (x) τ11 τ12 τ13 τ12 τ11
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Where

τ1 =
1
θ

sin5(
h
2

), τ2 = (2sin5(
h
2

)cos(
h
2

)(16cos2(
h
2

) − 3))/θ,

τ3 = 2(1 + 48cos4(
h
2

) − 16cos2(
h
2

))sin5(
h
2

)/θ, τ4 = (−5/2)sin4(
h
2

)cos(
h
2

)θ,

τ5 = −5sin4(
h
2

)cos2(
h
2

)(8cos2(
h
2

) − 3)/θ, τ6 = (5/4)sin3(
h
2

)(5os2(
h
2
− 1)/θ,

τ7 = (5/2)sin3(
h
2

)cos(
h
2

)(−15cos2(
h
2

) + 3 + 16cos4(
h
2

))/θ,

τ8 = (−5/2)sin3(
h
2

)(16cos6(
h
2
− 5cos2(

h
2

+ 1)/θ,

τ9 = (−5/8)sin2(
h
2

)cos(
h
2

)(25cos2(
h
2

) − 13)/θ,

τ10 = (−5/4)sin2(
h
2

)cos2(
h
2

)(8scos4(
h
2

) − 35cos2(
h
2

) + 15)/θ,

τ11 = (5/16)(125cos4(
h
2

) − 114cos2(
h
2

) + 13)sin(
h
2

)/θ,

τ12 = (−5/8)sin(
h
2

)cos(
h
2

)(176cos6(
h
2

) − 137cos7(
h
2

) − 6cos2(
h
2

) + 15)/θ,

τ13 = (5/8)(92cos6(
h
2

) − 117cos4(
h
2

) + 62cos2(
h
2

) − 13)(−1 + 4cos2(
h
2

))sin(
h
2

)/θ.

Now, we undertake that the estimation uM(x, t) to the function u(x, t) at (x, t j) is represented by:

u(x, t) ≈ uM(x, t) =

M+2∑
i=−2

Ci(t j)Q̂i(x), (2.2)

where, Ci(t j) are unknowns and need to be found using the initial and BCs, as well as the collocation
technique. Each QTB-spline consists of six components, and each component is included in six QTB-
splines. The function uM(x, t) can be represented as the variation over the component and stated as:

u
(
xM, t j

)
=

i+2∑
k=i−2

Q̂k (x) Ck

(
t j

)
. (2.3)

Using Eq (2.3), u, ux, uxx, uxxx, and uxxxx the knots can be expressed as:

u j
i = τ1C

j
i−2 + τ2C

j
i−1 + τ3C

j
i + τ2C

j
i+1 + τ1C

j
i+2, (2.4)

(ux)
j
i = −τ4C

j
i−2 − τ5C

j
i−1 + τ5C

j
i+1 + τ4C

j
i+2, (2.5)

(uxx)
j
i = τ6C

j
i−2 + τ7C

j
i−1 + τ8C

j
i + τ7C

j
i+1 + τ6C

j
i+2, (2.6)

(uxxx)
j
i = −τ9C

j
i−2 − τ10C

j
i−1 + τ10C

j
i+1 + τ9C

j
i+2, (2.7)

(uxxxx)
j
i = −τ11C

j
i−2 − τ12C

j
i−1 + τ13C

j
i + τ12C

j
i+1 + τ11Ci+2, (2.8)

where C j
i = Ci(t j).
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3. The problem’s discretization

Currently, the time derivative of the problem (1.1) is discretized by the usual FDM, while θ-weighted
scheme is used for spatial derivatives as follows:

u j+1
i −u j

i
∆t + γ

[(
θuxxxx)

j+1
i + (1 − θ)(uxxxx)

j
i

)]
−

[
θ(uxx)

j+1
i + (1 − θ)(uxx)

j
i

]
+ θ(u3) j+1

i

+(1 − θ)(u3) j
i − θu

j+1
i − (1 − θ)u j

i = f j
i . (3.1)

The Rubin-Graves [34] approach linearizes the term u3 as follows:

(u3) j+1
i = u j+1

i (u j+1
i u j+1

i ) = u j+1
i

(
2u j

i u
j+1
i − u j

i u
j
i

)
= 2u j

i (u
j+1
i u j+1

i ) − (u j
i )

2u j+1
i

= 3(u j
i )

2u j+1
i − 2(u j

i )
3. (3.2)

Taking θ = 1
2 and using it in the above Eqs (3.1) and (3.2), we get

u j+1
i − u j

i +
γ∆t
2

(uxxxx)
j+1
i +

γ∆t
2

(uxxxx)
j
i −

∆t
2

(uxx)
j+1
i −

∆t
2

(uxx)
j
i +

3∆t
2

(u j
i )

2u j+1
i − ∆t(u j

i )
3 +

1
2
− ∆t(u j

i )
3 −

∆t
2

u j+1
i −

∆t
2

u j
i = ∆t f j

i . (3.3)

Simplifying the above equation and manipulating terms, we have

(1 +
3∆t
2

(u j
i )

2 −
∆t
2

)u j+1
i −

∆t
2

(uxx)
j+1
i +

γ∆t
2

(uxxxx)
j+1
i

= (1 +
1
2

∆t(u j
i )

2 +
∆t
2

)u j
i +

∆t
2

(uxx)
j
i −

γ∆t
2

(uxxxx)
j
i + f̂ j

i . (3.4)

Let

1 +
3∆t
2

(u j
i )

2 −
∆t
2

= A j
i , and 1 +

1
2

∆t(u j
i )

2 +
∆t
2

= B j
i .

Then, the above equation becomes

A j
i u

j+1
i −

∆t
2

(uxx)
j+1
i +

γ∆t
2

(uxxxx)
j+1
i = B j

i u
j
i +

∆t
2

(uxx)
j
i

−
γ∆t
2

(uxxxx)
j
i + f̂ j

i . (3.5)

Now, using approximated u, uxx, and uxxxx via the QTB-spline collocation technique, we get(
τ1A j

i −
∆t
2
τ6 +

γ

2
∆tτ11

)
C j+1

i−2 +

(
τ2A j

i −
∆t
2
τ7 + τ12

∆t
2
γ

)
C j+1

i−1

+

(
τ3A j

i −
∆t
2
τ8 + τ13

γ

2
∆t

)
C j+1

i +

(
τ2A j

i −
∆t
2
τ7 + τ12

∆t
2
γ

)
C j+1

i+1

+

(
τ1A j

i −
∆t
2
τ6 + τ11

γ

2
∆t

)
C j+1

i+2 =

(
τ1B j

i +
∆t
2
τ6 − τ11

∆t
2
γ

)
C j

i−2
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+

(
τ2B j

i +
∆t
2
τ7 − τ12

∆t
2
γ

)
C j+1

i−1 +

(
τ3B j

i +
∆t
2
τ8 − τ13

∆t
2
γ

)
C j+1

i

+

(
τ2B j

i +
∆t
2
τ7 − τ12

∆t
2
γ

)
C j+1

i+1 +

(
τ1B j

i +
∆t
2
τ6 − τ11

∆t
2
γ

)
C j+1

i+2 + f̂ j
i . (3.6)

We suppose that Â j
i = τ1A j

i −
∆t
2 τ6 +

γ

2∆tτ11, B̂ j
i = τ2A j

i −
∆t
2 τ7 +

γ

2∆tτ12,
D̂ j

i = τ3A j
i −

∆t
2 τ8 +

γ

2∆tτ13, Ê j
i = τ1B j

i + ∆t
2 τ6 −

γ

2∆tτ11,
F̂ j

i = τ2B j
i + ∆t

2 τ7 −
γ

2∆tτ12, and Ĝ j
i = τ3B j

i + ∆t
2 τ8 −

γ

2∆tτ13.
Then, the above equation becomes

Â j
i c

j+1
i−2 + B̂ j

i c
j+1
i−1 + D̂ j

i c
j+1
i + B̂ j

i c
j+1
i+1 + Â j

i c
j+1
i+2 = Ê j

i c
j
i−2 + F̂ j

i c j
i−1 +

Ĝ j
i c

j
i + F̂ j

i c j
i+1 + Ê j

i c
j
i+2 + f̂ j

i , i = 2, 3, ...,M − 2, j = 0, 1, ...,N. (3.7)

The discretization of the BCs is as follows:

u(a, t) = ψ1(t)⇒ τ1C
j
−2 + τ2C

j
−1 + τ3C

j
0 + τ2C

j
1 + τ1C

j
2 = ψ

j
1, (3.8)

u(b, t) = ψ2(t)⇒ τ1C
j
M−2 + τ2C

j
M−1 + τ3C

j
M + τ2C

j
M+1 + τ1C

j
M+2 = ψ

j
2, (3.9)

uxx(a, t) = 0⇒ τ6C
j
−2 + τ7C

j
−1 + τ8C

j
0 + τ7C

j
1 + τ6C

j
2 = 0, (3.10)

and

uxx(b, t) = 0⇒ τ6C
j
M−2 + τ7C

j
M−1 + τ8C

j
M + τ7C

j
M+1 + τ6C

j
M+2 = 0. (3.11)

Solving Eqs (3.8)–(3.11), we have

C j
−1 =

τ̂P

τ̂m
C j

0 −C j
1 +

τ̂6

τ̂m
ψ

j
1, (3.12)

C j
−2 =

τ̂q

τ̂m
C j

0 −C j
2 −

τ7

τ̂m
ψ

j
1, (3.13)

C j
M+1 = −c j

M−1 −
τ̂p

τ̂m
C j

M +
τ6

τ̂m
ψ

j
2, (3.14)

C j
M+2 = −C j

M−2 +
τ̂q

τ̂m
C j

M −
τ7

τ̂m
ψ

j
2, (3.15)

where τ̂m = τ2τ6 − τ1τ7, τ̂p = τ3τ6 − τ1τ8, and τ̂q = τ3τ7 − τ2τ8.
For i = 0, using Eqs (3.12) and (3.13) in (3.7) and manipulating terms, we get(

τ̂q

τ̂m
Â j

0 −
τ̂p

τ̂m
B̂ j

0 + D̂ j
0

)
C j+1

0 =

(
τ̂q

τ̂m
Ê j

0 −
τ̂p

τ̂m
F̂ j

0 + Ĝ j
0

)
C j

0 +
τ7

τ̂m
Â j

0ψ
j+1
1 −
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τ6

τ̂m
B̂ j

0ψ
j+1
1 −

τ7

τ̂m
Ê j

0ψ
j
1 +

τ6

τ̂m
F̂ j

0ψ
j
1 + f̂ j

0 , j = 0, 1, 2, ...,N. (3.16)

For i = 1, using Eq (3.12) in (3.7), we get(
−
τ̂p

τ̂m
Â j

1 + B̂ j
1

)
C j+1

0 +
(
−Â j

1 + D̂ j
1

)
C j+1

1 + B j
1C

j+1
2 + A j

1C
j+1
3

=

(
−
τ̂p

τ̂m
Ê j

1 + F̂ j
1

)
C j

0 +
(
−Ê j

1 + Ĝ j
1

)
C j

1 + F̂ j
1C

j
2 + Ê j

1C
j
3 −

τ6

τ̂m
Â j

1ψ
j+1
1

+
τ6

τ̂m
Ê j

1ψ
j
1 + f̂ j

1 , j = 0, 1, 2, ...,N. (3.17)

For i = M − 1, using Eq (3.13) in (3.7), we get

Â j
M−1C

j+1
M−3 + B̂ j

M−1C
j+1
M−2 +

(
−Â j

M−1 + D̂ j
M−1

)
C j+1

M−1 +

(
−
τ̂p

τ̂m
Â j

M−1 + B̂ j
M−1

)
C j+1

M

= Ê j
M−1C

j
M−3 + F̂ j

M−1C
j
M−2 +

(
−Ê j

M−1Ĝ
j
M−1

)
C j

M−1 +

(
−
τ̂p

τ̂m
Ê j

M−1 + F̂ j
M−1

)
C j

M

−
τ6

τ̂m
Â j

M−1ψ
j+1
2 −

τ6

τ̂m
Ê j

M−1ψ
j
2 + f̂ j

i , j = 1, 2, ...,N. (3.18)

For i = M, using Eq (3.13) and (3.14) in (3.7), we get(
τ̂q

τ̂m
Â j

M −
τ̂p

τ̂m
B̂ j

M + D̂ j
M

)
C j+1

M(
τ̂q

τ̂m
Ê j

M −
τ̂p

τ̂m
F̂ j

M + Ĝ j
M

)
C j

M −
τ6

τ̂m
B j

Mψ
j+1
2 +

τ7

τ̂m
A j

Mψ
j+1
2

+
τ6

τ̂m
F j

Mψ
j
2 −

τ7

τ̂m
E j

Mψ
j
2 + f̂ j

M, j = 0, 1, ...,N. (3.19)

At the time t j, j = 0, 1, ...,N , and Eqs (3.16), (3.17), (3.7), (3.18), and (3.19) form a linear system of
(M + 1) × (M + 1) order. We must establish the initial vectors

(
C0

0,C
0
1, ...,C

0
M−1,C

0
M

)
from the IC to

solve the system with the M + 1 equation and M + 3 unknowns. To remove the C0
−1 and C0

M+1, we use
the IC u(x, 0) = φ(x) and its first and second derivatives at boundaries as follows:

u(x, 0) = φ(x)⇒ τ1C0
i−2 + τ2C0

i−1 + τ3C0
i + τ2C0

i+1 + τ1C0
i+2 = φ(xi), (3.20)

ux(a, 0) = φx(a)⇒ −τ4C0
2 − τ5C0

−1 + τ5C0
1 + τ4C0

2 = φx(a), (3.21)

ux(b, 0) = φx(b)⇒ −τ4C0
M−2 − τ5C0

M−1 + τ5C0
M+1 + τ4C0

M+2 = φx(b), (3.22)

uxx(a, 0) = φxx(a)⇒ τ6C0
−2 + τ7C0

−1 + τ8C0
0 + τ7C0

1 + τ6C0
2 = φxx(a), (3.23)

uxx(b, 0) = φxx(b)⇒ τ6C0
M−2 + τ7C0

M−1 + τ8C0
M + τ7C0

M+1 + τ6C0
M+2 = φxx(b). (3.24)
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Solving Eqs (3.20)–(3.24), we get

C0
−1 =

τ4τ8

η4
C0

0 +
η3

η4
C0

1 +
2τ4τ6

η4
C0

2 −
1
η4

(τ6φx(a) + τ4φxx(a)) , (3.25)

C0
−2 =

τ5τ8

η4
C0

0 +
2τ5τ7

η4
C0

1 +
η3

η4
C0

2 −
1
η4

(τ7φx(a) + τ5φxx(a)) , (3.26)

C0
M+1 =

2τ4τ6

η4
C0

M−2 +
η3

η4
C0

M−1 +
τ4τ8

η4
C0

M +
1
η4

(τ6φx(b) + τ4φxx(b)) , (3.27)

C0
M+2 =

η3

η4
C0

M−2 +
2τ5τ7

η4
C0

M−1 +
τ5τ8

η4
C0

M +
1
η4

(τ7φx(b) − τ5φxx(b)) , (3.28)

where τ5τ6 + τ4τ7 = η3 and τ5τ6 − τ4τ7 = η4.
For i = 0, using (3.25) and (3.26) in (3.20), we get(

τ1
τ5τ8

η4
+ τ2

τ4τ8

η4
+ τ3

)
C0

0 +

(
2τ1

τ5τ7

η4
+ τ2

η3

η4
+ τ2

)
C0

1 +

(
2τ2

τ4τ6

η4
+

τ1
η3

η4
+ τ1

)
C0

2 = u0(x0) +
τ1

η4
(τ7ψx(a) + τ5ψxx(a)) +

τ2

η4
(τ6φx(a) + τ4φxx(a)) . (3.29)

For i = 1, using (3.25) in (3.20), we get(
τ1
τ4τ8

η4
+ τ2

)
C0

0 +

(
τ1
η3

η4
+ τ3

)
C0

1 +

(
2τ1

τ4τ6

η4
+ τ2

)
C0

2 + τ1C0
3

= u0(x1) +
τ1

η4
(τ6φx(a) + τ4φxx(a)) . (3.30)

For i = M − 1, using (3.27) in (3.20), we get

τ1C0
M−3 +

(
2τ1

τ4τ6

η4
+ τ2

)
C0

M−2 +

(
τ1
η3

η4
+ τ3

)
C0

M−1 +(
τ1
τ4τ8

η4
+ τ2

)
C0

M = u0(xM−1) −
τ1

η4
(τ6φx(b) − τ4φxx(b)) . (3.31)

For i = M, using (3.27) and (3.29) in (3.20), we get(
τ1
η3

η4
+ 2τ2

τ4τ6

η4
+ τ1

)
C0

M−2 +

(
2τ1

τ5τ7

η4
+ τ2

η3

η4
+ τ2

)
C0

M−1 +

(
τ1
τ5τ8

η4
+

τ2
τ4τ8

η4
+ τ3

)
C0

M = u0(xM) −
τ1

η4
(τ7ψx(b) − τ5ψxx(b)) −

τ1

η4
(τ6φx(b) − τ4φxx(b)) . (3.32)

Equations (3.25), (3.26), (3.20), (3.27), and (3.29) form a system (M + 1)× (M + 1) order at the time t0.
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4. Analysis of stability

This section goes into stability analysis for the discretized system of the extended F-K equation via
the von Neumann method [35]. According to the Duhamels’ principle [36], the stability analysis of
an inhomogeneous problem follows promptly from the homogeneous one. Thus, it seems necessary to
examine the stability of the discretized system for the extended F-K equation with the force function
f = 0. Taking θ = 1

2 and linearizing the nonlinear term u3 by taking u2 = k̂2
1 as a locally constant, the

Eq (3.1) can be written as

u j+1
i − u j

i + γ
∆t
2

(uxxxx)
j
i +

γ

2
∆t(uxxxx)

j
i −

∆t
2

(uxx)
j+1
i

−
∆t
2

(uxx)
j
i k̂

2
i−1

u j+1
i + u j

i

2

 ∆t = 0. (4.1)

The above equation can be written as

Āu j+1
i =

∆t
2

(uxx)
j+1
i + γ

∆t
2

(uxxxx)
j+1
i = B̄u j

i =
∆t
2

(uxx)
j
i + γ

∆t
2

(uxxxx)
j
i , (4.2)

where 1 +
k̂2

1 − 1
2

 = Ā, and
1 − k̂2

1 − 1
2

 = B̄.

Now, using approximated values of u, uxx, and uxxxx by the QTB-spline collocation technique in
Eq (4.2), we get

A∗C j+1
i−2 + B∗C j+1

i−1 + D∗C j+1
i + B∗C j+1

i+1 + A∗C j+1
i+1 =

E∗C j
i−2 + F∗C j

i−1 + G∗C j
i + F∗C j

i+1 + E∗C j
i+1, (4.3)

where

A∗ = τ1Ā −
∆t
2
τ6 +

γ

2
∆tτ11, B∗ = τ2Ā −

∆t
2
τ7 +

γ

2
∆tτ12,

D∗ = τ3Ā −
∆t
2
τ7 +

γ

2
∆tτ13, E∗ = τ1B̄ −

∆t
2
τ6 +

γ

2
∆tτ11,

F∗ = τ2B̄ −
∆t
2
τ7 +

γ

2
∆tτ12, and, G∗ = τ3B̄ −

∆t
2
τ8 +

y
2

∆tτ13.

We suppose one Fourier mode from the full solution C j
i = δ jeκiϑ is used as trial solutions at xi, where

ϑ = εh. The h is the element size, ε is the mode number, and κ =
√
−1. Inverting this solution in

Eq (4.3), we have

(2A∗cos(2εh) + 2B∗cos(εh) + D∗) δ j+1 = (2E∗cos(2εh) + 2F∗cos(εh) + G∗) δ j. (4.4)

Simplifying and manipulating some terms, we have

δ =
4E∗cos2(εh) + 2F∗cos2( εh2 ) − (2E∗ + 2F∗ −G∗)

4A∗cos2(εh) + 2B∗cos2( εh2 ) − (2A∗ + 2B∗ − D∗)
, (4.5)
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where,

A∗ =

(
1 + k̂2

2

)
τ1 +

∆t
2

(γτ11 − τ6) , B∗ =

(
1 + k̂2

2

)
τ2 +

∆t
2

(γτ12 − τ7) ,

D∗ =

(
1 + k̂2

2

)
τ3 +

∆t
2

(γτ13 − τ8) , E∗ =

(
3 − k̂2

2

)
τ1 −

∆t
2

(γτ11 − τ6) ,

F∗ =

(
3 − k̂2

2

)
τ2 −

∆t
2

(γτ12 − τ7) , G∗ =

(
3 − k̂2

2

)
τ3 −

∆t
2

(γτ13 − τ8) .

Inverting values of coefficients, we observe that E∗ ≤ A∗, F∗ ≤ B∗, G∗ ≤ D∗, and, so, |δ| ≤ 1.
Therefore, the extended F-K equation discretized system is unconditionally stable.

5. Computational results

Example 1. Consider extended F-K Eq (1.1) in x ∈ [−4, 4] with the IC as

u(x, 0) = − sin πx, x ∈ [−4, 4],

and the BCs as

u(−4, t) = 0, uxx(−4, t) = 0, u(4, t) = 0, uxx(4, t) = 0.

Figures 1(a)–(c) illustrate the computations for h = 0.1, ∆t = 0.001 at t = 0, 0.05, 0.1, 0.15, and 2.0 for
γ = 0.0001 and γ = 0.001, respectively. The figures indicate that solutions are identical for γ = 0.0001
and γ = 0.001, whereas solutions for γ = 0.1 rapidly decrease toward 0, confirming the extended F-K
equation’s stabilizing property. The solutions that are acquired efficiently reproduce the satisfactory
qualitative properties of the extended F-K equation. Figures 2(a)–(c) depict the three-dimensional
visualization of numerical solutions for different values of γ (γ = 0.0001, γ = 0.001, and γ = 0.1)
at t = 0.2, with h = 0.1 and ∆t = 0.001. It can be noted from these figures that the outcome of
solutions is nearly identical for very small values of γ. However, the deterioration of solutions to
zero is very immediate in the case of γ = 0.1, which proves the stabilizing nature of the extended
F-K equation. Table 2 presents a comparison between the current approach and existing methods in
terms of L2 and L∞ error norms. The comparison is made with a value of ∆t = 0.001, γ = 0.1,
and t = 0.2. At M = 20, our technique surpasses quartic B-spline differential quadrature method
(QAB-DQM) [30], QBCM [11], and modified cubic B-spline based differential quadrature method
(MCB-DQM) [8] in terms of outcomes. Furthermore, our study shows that our results exhibit greater
performance compared to the findings in QBDQM [10] in terms of L2 error norms. Therefore, we are
able to conclude that the approach yields better results compared to certain methods described in the
literature for a small grid size.
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Table 2. The error norms L2 and L∞ for Example 1 with γ = 0.1 and ∆t = 0.001 at t = 0.2.

Methods Error norms M =20 M =40 M =80

Projected method
L2 6.401e-03 1.9524e-02 5.839e-04
L∞ 2.796e-03 6.449e-03 2.574e-04

QAB-DQM [30]
L2 1.62e-02 8.91e-03 2.92e-03
L∞ 1.31e-02 7.94e-03 2.76e-03

QBDQM [10]
L2 2.135e-02 2.216e-03 3.123e-04
L∞ 1.155e-03 1.224e-03 1.531e-04

QBCM [11]
L2 1.116e-02 2.815e-03 5.657e-04
L∞ 5.510e-03 1.339e-03 2.834e-04

MCB-DQM [8]
L2 1.888e-02 2.300e-03 2.400e-04
L∞ 1.184e-02 2.220e-03 2.300e-04

-4 -3 -2 -1 0 1 2 3 4

x

-1

-0.5

0

0.5

1

u
(x
,
t)

t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

(a)

-4 -3 -2 -1 0 1 2 3 4

x

-1

-0.5

0

0.5

1

u
(x
,
t)

t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

(b)

-4 -3 -2 -1 0 1 2 3 4

x

-1

-0.5

0

0.5

1

u
(x
,
t)

t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

(c)

Figure 1. Simulation of Example 1 with (a) γ = 0.0001, (b) γ = 0.001, and (c) γ = 0.1 for h = 0.1 and
∆t = 0.001 at various t.
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Figure 2. 3D plots of u(x, t) for Example 1 with (a) γ = 0.0001, (b) γ = 0.001 , and (c) γ = 0.1 for h = 0.1
and ∆t = 0.001 at t = 0.2.

Example 2. Consider the extended F-K Eq (1.1) in x ∈ [−4, 4] with the IC as

u(x, 0) = 10−3 exp
(
−x2

)
, x ∈ [−4, 4],

and the BCs as

u(−4, t) = 1, uxx(−4, t) = 0, u(4, t) = 1, uxx(4, t) = 0.

Figure 3 illustrates the computations for h = 0.1, ∆t = 0.001 at t = 0.25, 1, 1.75, 2.5, 3.5, and 4.5 for
γ = 0.0001. This figure shows that solutions decay and reach a stable state approaching the value 1 as
time increases, which is the instant replicate of the adequate qualitative performance of the extended
F-K equation. Figure 4 illustrates the 3D view of the computations with γ = 0.0001, h = 0.025, and
∆t = 0.0001 for t ∈ [0.25, 5]. It is also obvious from this figure that solutions start to decay and reach
a stable state, approaching the value 1 as time increases. Table 3 presents the L2 and L∞ error norms,
in addition to the Rc, for the parameters γ = 0.0001 and ∆t = 0.0001 at t = 1 and t = 4.5. The
table shows a decrease in error norms as the mesh size increases. Additionally, it is noted that error
norms are at their minimum at time t=4.5, indicating that the extended F-K equation is in a stable state.
Furthermore, the accuracy of the projected procedure in space variables is second order.
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Table 3. The error norms L2 and L∞ for Example 2, convergence rate with γ = 0.0001,
∆t = 0.0001 at t = 1 and t = 4.5.

M
t = 1 t = 4.5

L2 Rc L∞ Rc L2 Rc L∞ Rc

20 2.909e-02 – 9.708e-03 – 1.265e-03 – 4.039e-04 –
40 9.250e-03 1.65 2.192e-03 2.15 3.437e-04 1.88 7.981e-05 2.34
80 2.587e-03 1.84 4.354e-04 2.33 9.182e-05 1.90 1.520e-05 2.39

-4 -3 -2 -1 0 1 2 3 4
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t = 1.00
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t = 2.50
t = 3.50
t ≥ 4.50

Figure 3. Plots for Example 2 with γ = 0.0001, h = 0.1, and ∆t = 0.001 at different t.

Figure 4. 3D plots of u(x, t) for Example 2 with γ = 0.0001 for h = 0.025, and ∆t = 0.0001, where
t ∈ [0.25, 5].
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Example 3. Consider the extended F-K Eq (1.1) in x ∈ [−4, 4] with the IC as

u(x, 0) = −10−3 exp
(
−x2

)
, x ∈ [−4, 4],

and the BCs

u(−4, t) = −1, uxx(−4, t) = 0, u(4, t) = −1, uxx(4, t) = 0.

Figure 5 illustrates the computations for h = 0.1, ∆t = 0.001 at t = 0.25, 1, 1.75, 2.5, 3.5, and 4.5 for
γ = 0.0001. Figure 6 depicts the 3D view of the numerical solutions with γ = 0.0001, ∆t = 0.0001,
and h = 0.025 for t ∈ [0.25, 5]. It is obvious from these figures that solutions start decaying and reach a
stable state approaching the value -1 as time increases, which is the instant replication of the adequate
qualitative performance of the extended F-K equation.
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Figure 5. Plots for Example 3 with γ = 0.0001, h = 0.1, and ∆t = 0.001 at different t.

Figure 6. 3D plots of u(x, t) for Example 3 with γ = 0.0001 for h = 0.025, and ∆t = 0.0001, where
t ∈ [0.25, 5].
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Example 4. Lastly, we look at the nonhomogenous extended F-K equation

ut + γuxxxx − uxx + f (u) = g(x, t), x ∈ [0, 1], t ∈ [0, 1],

with

u(x, t) = e−tsin(2πx),

and BCs

u(0, t) = 0, uxx(0, t) = 0, u(1, t) = 0, uxx(1, t) = 0,

where f (u) = u3 − u and g(x, t) = e−tsin(2πx)(e−2tsin2(2πx) + 4π2 + 16π4 − 2).

Table 4 shows L2 and L∞ error norms as well as numerical convergence Rc for γ = 1, ∆t = 0.01 at
t = 0.5 and t = 1. The table clearly indicates that error norms are negligible and decrease as mesh sizes
expand. Additionally, the proposed method converges to a space variable of the second order. Figure 7
depicts exact and computation u(x, t) for γ = 1, and ∆t = 0.001 for h = 0.025 with t = 0.1, 0.3, 0.5,
and 0.7, while Figure 8 depicts 3D plots of exact and computation u(x, t) with γ = 1, ∆t = 0.0005
for h = 0.05 and t ∈ [0.02], and h = 0.025 and t ∈ [0, 1], respectively. These figures show excellent
agreement between extact and computation solutions. The absolute error norms are also publicized in
Figure 8, which are approximately in 10−3.

Table 4. The error norms L2 and L∞ for Example 4, convergence rate with γ = 1, ∆t = 0.01
at t = 0.5 and t = 1.

M
t = 0.5 t = 1

L2 Rc L∞ Rc L2 Rc L∞ Rc

20 8.675e-02 – 2.664e-02 – 1.428e-01 – 4.414e-02 –
25 5.057e-02 2.42 1.425e-02 2.80 8.270e-02 2.45 2.312e-02 2.90
40 1.930e-02 2.01 5.192e-03 2.15 2.708e-02 2.37 6.551e-03 2.68
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Figure 7. A comparison of the exact and numerical values of u(x, t) for Example 4 with γ = 1, h = 0.025,
and ∆t = 0.001 for t=0.1, 0.3, 0.5, 0.7.
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Figure 8. 3D plots of exact and numerical u(x, t) together with abs. norms for γ = 1 and ∆t = 0.0005 with
(a) h = 0.05 and t ∈ [0, 0.02], (b) h = 0.025 and t ∈ [0, 1] for Example 4.

6. Conclusions

A collocation technique based on QTB-spline functions is reported for homogeneous as well as
nonhomogeneous extended F-K equations. The nonlinear term is handled by the Rubin-Graves (R-G)
type linearization process. To validate results and check efficiency, three examples of homogeneous
and one example of nonhomogeneous extended F-K equations are considered. The projected method
has been found to yield improved results in comparison to the methods described in [8, 10, 11, 30].
The performance of the projected technique and a relative investigation are accomplished graphically.
Figures 1 and 2 portray that the nature of solutions is nearly similar for γ = 0.0001 and γ = 0.001 while,
for γ = 0.1, solutions decompose rapidly to 0, ensuring the stability of the extended F-K equation.
Figures 3 and 5 portray that solutions decay and attain a stable state approaching the values 1 and -1,
respectively, as time increases, which is the instant replicate of the adequate qualitative performance
of the extended F-K equation. Figure 8 shows excellent agreement between exact and numerical
solutions, with absolute error norms of approximately 10−3. We show that the projected technique
is unconditionally stable for the discretized extended F-K equations. Additionally, the technique is
determined to be accurate to a second order in space. The numerical analysis proves the projected
technique is straightforward and yields very accurate results.
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