Research article

Optimality conditions associated with new controlled extremization models

  • Received: 13 March 2024 Revised: 14 April 2024 Accepted: 28 April 2024 Published: 20 May 2024
  • MSC : 26B25, 49J20, 90C17, 90C32, 90C46

  • Applying a parametric approach, in this paper we studied a new class of multidimensional extremization models with data uncertainty. Concretely, first, we derived the robust conditions of necessary optimality. Thereafter, we established robust sufficient optimality conditions by employing the various forms of convexity of the considered functionals. In addition, we formulated an illustrative example to validate the theoretical results.

    Citation: Tareq Saeed. Optimality conditions associated with new controlled extremization models[J]. AIMS Mathematics, 2024, 9(7): 17319-17338. doi: 10.3934/math.2024842

    Related Papers:

  • Applying a parametric approach, in this paper we studied a new class of multidimensional extremization models with data uncertainty. Concretely, first, we derived the robust conditions of necessary optimality. Thereafter, we established robust sufficient optimality conditions by employing the various forms of convexity of the considered functionals. In addition, we formulated an illustrative example to validate the theoretical results.



    加载中


    [1] T. Antczak, Parametric approach for approximate efficiency of robust multiobjective fractional programming problems, Math. Methods Appl. Sci., 44 (2021), 11211–11230. https://doi.org/10.1002/mma.7482 doi: 10.1002/mma.7482
    [2] T. Antczak, A. Pitea, Parametric approach to multitime multiobjective fractional variational problems under (f, $\rho$)-convexity, Optimal Control Appl. Methods, 37 (2016), 831–847. http://dx.doi.org/10.1002/oca.2192 doi: 10.1002/oca.2192
    [3] A. Baranwal, A. Jayswal, Preeti, Robust duality for the uncertain multitime control optimization problems, Internat. J. Robust Nonlinear Control, 32 (2022), 5837–5847. https://doi.org/10.1002/rnc.6113 doi: 10.1002/rnc.6113
    [4] A. Beck, A. Ben-Tal, Duality in robust optimization: Primal worst equals dual best, Oper. Res. Lett., 37 (2009), 1–6. https://doi.org/10.1016/j.orl.2008.09.010 doi: 10.1016/j.orl.2008.09.010
    [5] W. Dinkelbach, On nonlinear fractional programming, Manag. Sci., 13 (1967), 492–498.
    [6] Y. Guo, G. Ye, W. Liu, D. Zhao, S. Treanţă, Optimality conditions and duality for a class of generalized convex interval-valued optimization problems, Mathematics, 9 (2021), 2979. https://doi.org/10.3390/math9222979 doi: 10.3390/math9222979
    [7] R. Jagannathan, Duality for nonlinear fractional programs, Zeitschrift fuer Oper. Res., 17 (1973), 1–3. https://doi.org/10.1007/BF01951364 doi: 10.1007/BF01951364
    [8] A. Jayswal, Preeti, M. A. Jiménez, An exact $l_1$ penalty function method for a multitime control optimization problem with data uncertainty, Optim. Control Appl. Methods., 41 (2020), 1705–1717. https://doi.org/10.1002/oca.2634 doi: 10.1002/oca.2634
    [9] A. Jayswal, Preeti, M. A. Jiménez, Robust penalty function method for an uncertain multi-time control optimization problems, J. Math. Anal. Appl., 505 (2022), 125453. https://doi.org/10.1016/j.jmaa.2021.125453 doi: 10.1016/j.jmaa.2021.125453
    [10] V. Jeyakumar, G. Li, G.M. Lee, Robust duality for generalized convex programming problems under data uncertainty, Nonlinear Anal., 75 (2012), 1362–1373. https://doi.org/10.1016/j.na.2011.04.006 doi: 10.1016/j.na.2011.04.006
    [11] G. S. Kim, M. H. Kim, On sufficiency and duality for fractional robust optimization problems involving (V, $\rho$)-invex function, East Asian Math. J., 32 (2016), 635–639. https://doi.org/10.7858/eamj.2016.043 doi: 10.7858/eamj.2016.043
    [12] M. H. Kim, G. A. Kim, On optimality and duality for generalized fractional robust optimization problems, East Asian Math. J., 31 (2015), 737–742. http://dx.doi.org/10.7858/eamj.2015.054 doi: 10.7858/eamj.2015.054
    [13] M. H. Kim, G. S. Kim, Optimality conditions and duality in fractional robust optimization problems, East Asian Math. J., 31 (2015), 345–349. https://doi.org/10.7858/eamj.2015.025 doi: 10.7858/eamj.2015.025
    [14] Z. Lu, Y. Zhu, Q. Lu, Stability analysis of nonlinear uncertain fractional differential equations with Caputo derivative, Fractals, 29 (2021), 2150057. https://doi.org/10.1142/S0218348X21500572 doi: 10.1142/S0218348X21500572
    [15] S. S. Manesh, M. Saraj, M. Alizadeh, M. Momeni, On robust weakly $\epsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty, AIMS Mathematics, 7 (2021), 2331–2347. https://doi.org/10.3934/math.2022132 doi: 10.3934/math.2022132
    [16] N. B. Minh, T. T. T. Phuong, Robust equilibrium in transportation networks, Acta Math. Vietnam., 45 (2020), 635–650. https://doi.org/10.1007/s40306-018-00320-3 doi: 10.1007/s40306-018-00320-3
    [17] Ş. Mititelu, Efficiency and duality for multiobjective fractional variational problems with ($\rho$, b)-quasiinvexity, Yugosl. J. Oper. Res., 19 (2016).
    [18] Ş. Mititelu, S. Treanţă, Efficiency conditions in vector control problems governed by multiple integrals, J. Appl. Math. Comput., 57 (2018), 647–665. https://doi.org/10.1007/s12190-017-1126-z doi: 10.1007/s12190-017-1126-z
    [19] C. Nahak, Duality for multiobjective variational control and multiobjective fractional variational control problems with pseudoinvexity, Int. J. Stoch. Anal., 2006 (2006), 062631. https://doi.org/10.1155/JAMSA/2006/62631 doi: 10.1155/JAMSA/2006/62631
    [20] R. B. Patel, Duality for multiobjective fractional variational control problems with ($F$, $\rho$)-convexity, Int. J. Stat. Manag. Syst., 3 (2000), 113–134. https://doi.org/10.1080/09720510.2000.10701010 doi: 10.1080/09720510.2000.10701010
    [21] T. Saeed, S. Treanţă, On sufficiency conditions for some robust variational control problems, Axioms, 12 (2023), 705. https://doi.org/10.3390/axioms12070705 doi: 10.3390/axioms12070705
    [22] T. Saeed, Robust optimality conditions for a class of fractional optimization problems, Axioms, 12 (2023), 673. https://doi.org/10.3390/axioms12070673 doi: 10.3390/axioms12070673
    [23] X. Sun, X. Feng, K. L. Teo, Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data, Optim. Lett., 16 (2022), 1457–1476. https://doi.org/10.1007/s11590-021-01785-2 doi: 10.1007/s11590-021-01785-2
    [24] X. Sun, K. L. Teo, X. J. Long, Some characterizations of approximate solutions for robust semi-infinite optimization problems, J. Optim. Theory Appl., 191 (2021), 281–310. https://doi.org/10.1007/s10957-021-01938-4 doi: 10.1007/s10957-021-01938-4
    [25] X. Sun, W. Tan, K. L. Teo, Characterizing a class of robust vector polynomial optimization via sum of squares conditions, J. Optim. Theory Appl., 197 (2023), 737–764. https://doi.org/10.1007/s10957-023-02184-6 doi: 10.1007/s10957-023-02184-6
    [26] X. Sun, K. L. Teo, J. Zeng, X. L. Guo, On approximate solutions and saddle point theorems for robust convex optimization, Optim. Lett., 14 (2020), 1711–1730. https://doi.org/10.1007/s11590-019-01464-3 doi: 10.1007/s11590-019-01464-3
    [27] S. Treanţă, Efficiency in uncertain variational control problems, Neural. Comput. Appl., 33 (2021), 5719–5732. https://doi.org/10.1007/s00521-020-05353-0 doi: 10.1007/s00521-020-05353-0
    [28] S. Treanţă, Necessary and sufficient optimality conditions for some robust variational problems, Optim. Control Appl. Methods, 44 (2023), 81–90. https://doi.org/10.1002/oca.2931 doi: 10.1002/oca.2931
    [29] H. C. Wu, Duality theory for optimization problems with interval-valued objective functions, J. Optim. Theory Appl., 144 (2010), 615–628. https://doi.org/10.1007/s10957-009-9613-5 doi: 10.1007/s10957-009-9613-5
    [30] J. Zhang, S. Liu, L. Li, Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607–631. https://doi.org/10.1007/s11590-012-0601-6 doi: 10.1007/s11590-012-0601-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(412) PDF downloads(32) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog