Loading [MathJax]/jax/output/SVG/jax.js
Research article

Optimality conditions associated with new controlled extremization models

  • Received: 13 March 2024 Revised: 14 April 2024 Accepted: 28 April 2024 Published: 20 May 2024
  • MSC : 26B25, 49J20, 90C17, 90C32, 90C46

  • Applying a parametric approach, in this paper we studied a new class of multidimensional extremization models with data uncertainty. Concretely, first, we derived the robust conditions of necessary optimality. Thereafter, we established robust sufficient optimality conditions by employing the various forms of convexity of the considered functionals. In addition, we formulated an illustrative example to validate the theoretical results.

    Citation: Tareq Saeed. Optimality conditions associated with new controlled extremization models[J]. AIMS Mathematics, 2024, 9(7): 17319-17338. doi: 10.3934/math.2024842

    Related Papers:

    [1] Qiu-Yan Ren, Jian-Ping Sun . Optimality necessary conditions for an optimal control problem on time scales. AIMS Mathematics, 2021, 6(6): 5639-5646. doi: 10.3934/math.2021333
    [2] M. E. Elbrolosy . Semi-(E,F)-convexity in complex programming problems. AIMS Mathematics, 2022, 7(6): 11119-11131. doi: 10.3934/math.2022621
    [3] Shima Soleimani Manesh, Mansour Saraj, Mahmood Alizadeh, Maryam Momeni . On robust weakly ε-efficient solutions for multi-objective fractional programming problems under data uncertainty. AIMS Mathematics, 2022, 7(2): 2331-2347. doi: 10.3934/math.2022132
    [4] Savin Treanţă, Cristina-Florentina Marghescu, Laura-Gabriela Matei . Efficiency conditions in multiple-objective optimal control models under generalized hypotheses. AIMS Mathematics, 2024, 9(9): 25184-25204. doi: 10.3934/math.20241228
    [5] Yanfei Chai . Robust strong duality for nonconvex optimization problem under data uncertainty in constraint. AIMS Mathematics, 2021, 6(11): 12321-12338. doi: 10.3934/math.2021713
    [6] Gerardo Sánchez Licea . Sufficiency for singular trajectories in the calculus of variations. AIMS Mathematics, 2020, 5(1): 111-139. doi: 10.3934/math.2020008
    [7] Ziran Yin, Chongyang Liu, Xiaoyu Chen, Jihong Zhang, Jinlong Yuan . A comprehensive characterization of the robust isolated calmness of Ky Fan k-norm regularized convex matrix optimization problems. AIMS Mathematics, 2025, 10(3): 4955-4969. doi: 10.3934/math.2025227
    [8] Zhibin Nie, Shuning Wang, Xiaolin Huang . A polynomial local optimality condition for the concave piecewise linear network flow problem. AIMS Mathematics, 2021, 6(3): 2094-2113. doi: 10.3934/math.2021128
    [9] Min Wang, Jiao Teng, Lei Wang, Junmei Wu . Application of ADMM to robust model predictive control problems for the turbofan aero-engine with external disturbances. AIMS Mathematics, 2022, 7(6): 10759-10777. doi: 10.3934/math.2022601
    [10] Xin Wang, Yuxiang Liu, Lisha Wang . Necessary optimality conditions for two-step descriptor systems. AIMS Mathematics, 2022, 7(5): 9039-9056. doi: 10.3934/math.2022503
  • Applying a parametric approach, in this paper we studied a new class of multidimensional extremization models with data uncertainty. Concretely, first, we derived the robust conditions of necessary optimality. Thereafter, we established robust sufficient optimality conditions by employing the various forms of convexity of the considered functionals. In addition, we formulated an illustrative example to validate the theoretical results.



    Optimization theory can be regarded as an intersection of physics, machine learning, and mathematics. This theory is used for practical problems in decision theory, data classification, economics, production inventory, and game theory. As data used in practical models is often derived by measurement, then the errors occur (see Kim and Kim [13]). Sometimes, the appearance of such errors can involve some computational outcomes contradicting the actual model. In this regard, the use of fuzzy numbers, interval analysis, and the robust approach to formulate data (and thus build uncertain optimization models, that is optimization models governed by uncertain data) are, in recent years, some popular research directions (see, for example, Antczak [1]).

    By a fractional extremization model, we understand to optimize the ratio for two objective/cost functionals. In this direction, Dinkelbach [5], followed by Jagannathan [7], established a parametric approach to investigate a fractional extremization model by transforming it into a nonfractional new extremization model. During the time, various scholars and researchers have studied this approach to solve different fractional optimization models. We highlight the papers of Antczak and Pitea [2], Mititelu and Treanţă [18], and Mititelu [17]. The gH-derivative of symmetric type, accompanied by several applications in interval minimization models, have been proposed by Guo et al. [6]. For other ideas on this topic, we can consult the papers of Patel [20], Manesh et al. [15], and Nahak [19].

    As mentioned above, uncertain extremization models appear when we have old sources, inadequate information, sample disparity, or a large volume of data (see Kim and Kim [12]). In these cases, a robust approach has a fundamental role in analyzing the optimization model involving uncertain data. It reduces the uncertainty of the original problem (see Kim and Kim [11]). Over the years, many uncertain optimization models have been considered by various researchers trying to establish new and important results (see, for instance, Treanţă [27], Preeti et al. [8], and Jayswal et al. [9]). In this regard, Lu et al. [14] established a stability analysis of nonlinear uncertain fractional differential equations with Caputo derivative. Beck and Tal [4] investigated duality in some robust extremization models and stated that the primal worst is equal to the dual best. Baranwal et al. [3] considered a robust-type duality in uncertain multi-time controlled minimization models. Jeyakumar et al. [10] studied robust duality for programming problems with generalized convexity under data uncertainty. Sun et al. [26] analyzed approximate solutions and saddle point theorems for robust convex optimization. Wu [29] formulated a duality theory for optimization problems with interval-valued objective functions. Also, Zhang et al. [30] stated the optimality conditions of KKT-type (Karush-Kuhn-Tucker) in a class of extremization problems with generalized convexity and interval-valued objective function.

    Inspired by all the research works mentioned above, this paper deals with a new constrained fractional optimization model with uncertainty in the objective functional determined by multiple integral. Concretely, by considering a parametric approach, robust necessary optimality conditions are derived. Moreover, we prove the robust sufficient optimality criteria by using various forms of convexity for the involved functionals. In addition, we formulate an illustrative example to validate the theoretical results. The paper has the following principal merits: (i) Defining the robust-type optimal solution and, also, the robust-type Kuhn-Tucker point, associated with multiple integral functionals, by using a parametric approach; (ii) providing original and innovative demonstrations of the principal theorems; (iii) formulating a new context generated by normed spaces of function and functionals of multiple integral-type. This study is strongly connected with the analysis performed in Saeed and Treanţă [21], where the cost functionals are given by path-independent curvilinear-type integrals, and the concavity assumptions are not considered. Also, Saeed [22] considered robust-type optimality criteria for fractional extremization models determined by path-independent curvilinear-type integrals (and not multiple integral functional as in this study), but without monotonic and/or quasi-convexity assumptions as in the present paper. For connected viewpoints, see Minh and Phuong [16] and Su et al. [24,25].

    In the following, in Section 2, we give basic concepts and necessary preliminaries to state the main derived theorems. More precisely, we formulate the multidimensional fractional optimization model with uncertainty in the objective functional, the corresponding extremization nonfractional model, and the associated robust-type counterparts. Next, in Section 3, under suitable forms of convexity, we establish robust-type optimality criteria of the problem under study. Also, we introduce the concept of robust-type Kuhn-Tucker point to the considered uncertain extremization problem. Section 4 presents an example to support the derived theoretical results. In Section 5, we provide the conclusions of the current study.

    In this paper, we consider λ=(λπ),π=¯1,m,u=(uι),ι=¯1,n, and y=(yj),j=¯1,l as arbitrary points of Rm, Rn and Rl, respectively. Let A=Aλ0,λ1Rm be a compact set containing the points λ0=(λπ0) and λ1=(λπ1),π=¯1,m, and let dλ=dλ1dλm be the volume element in Rm. Define the function spaces

    A={u:ARn| u = piecewise smooth state function},
    B={y:ARl| y = piecewise continuous control function},

    having the norm generated by

    (u,y),(b,z)=A[u(λ)b(λ)+y(λ)z(λ)]dλ=A[nι=1uι(λ)bι(λ)+lj=1yj(λ)zj(λ)]dλ,(u,y),(b,z)A×B.

    For uπ(λ)=uλπ(λ), we introduce the following constrained fractional extremization model, with uncertainty in objective functional,

    (Prob)min(u(),y())AΓ(λ,u(λ),uπ(λ),y(λ),σ)dλAΥ(λ,u(λ),uπ(λ),y(λ),ω)dλ,

    subject to

    Mβ(λ,u(λ),uπ(λ),y(λ))0,β=¯1,q,λA,Nιπ(λ,u(λ),uπ(λ),y(λ)):=uλπ(λ)Qιπ(λ,u(λ),y(λ))=0,ι=¯1,n,π=¯1,m,λA,u(λ0)=u0=given,u(λ1)=u1=given,

    where σΣR and ωΩR are uncertainty parameters, where Σ and Ω are convex compact sets, and Γ:A×A2×B×ΣR,Υ:A×A2×B×ΩR,Mβ:A×A2×BR,β=¯1,q,Nιπ:A×A2×BR,ι=¯1,n,π=¯1,m are some given C1-class functionals.

    The associated robust-type counterpart of (Prob) is formulated as below

    (RobProb)min(u(),y())AmaxσΣΓ(λ,u(λ),uπ(λ),y(λ),σ)dλAminωΩΥ(λ,u(λ),uπ(λ),y(λ),ω)dλ,

    subject to

    Mβ(λ,u(λ),uπ(λ),y(λ))0,β=¯1,q,λA,Nιπ(λ,u(λ),uπ(λ),y(λ))=0,ι=¯1,n,π=¯1,m,λA,u(λ0)=u0=given,u(λ1)=u1=given,

    where Γ,Υ,M=(Mβ) and N=(Nιπ) are the same as in (Prob) .

    The feasible solution set for (RobProb) and (Prob) can be written as follows:

    K={(u,y)A×B|Mβ(λ,u(λ),uπ(λ),y(λ))0,Nιπ(λ,u(λ),uπ(λ),y(λ))=0,u(λ0)=u0=given,u(λ1)=u1=given,λA}.

    Let us consider, for (u,y)K, that Γ0, Υ>0, and introduce the positive scalar (see Jagannathan [7], Dinkelbach [5], Mititelu and Treanţă [18]),

    V0σ,ω=min(u(),y())AmaxσΣΓ(λ,u(λ),uπ(λ),y(λ),σ)dλAminωΩΥ(λ,u(λ),uπ(λ),y(λ),ω)dλ=AmaxσΣΓ(λ,u0(λ),u0π(λ),y0(λ),σ)dλAminωΩΥ(λ,u0(λ),u0π(λ),y0(λ),ω)dλ,

    to build an extremization nonfractional model for (Prob) , as

    (NonFracProb)min(u(),y()){AΓ(λ,u(λ),uπ(λ),y(λ),σ)dλV0σ,ωAΥ(λ,u(λ),uπ(λ),y(λ),ω)dλ},

    subject to

    Mβ(λ,u(λ),uπ(λ),y(λ))0,β=¯1,q,λA,Nιπ(λ,u(λ),uπ(λ),y(λ))=0,ι=¯1,n,π=¯1,m,λA,u(λ0)=u0=given,u(λ1)=u1=given.

    The associated robust-type counterpart to (NonFracProb) is formulated as below:

    (RobNonFracProb)min(u(),y()){AmaxσΣΓ(λ,u(λ),uπ(λ),y(λ),σ)dλV0σ,ωAminωΩΥ(λ,u(λ),uπ(λ),y(λ),ω)dλ},

    subject to

    Mβ(λ,u(λ),uπ(λ),y(λ))0,β=¯1,q,λA,Nιπ(λ,u(λ),uπ(λ),y(λ))=0,ι=¯1,n,π=¯1,m,λA,u(λ0)=u0=given,u(λ1)=u1=given.

    Further, we consider the notations: u=u(λ),y=y(λ),¯u=¯u(λ), ¯y=¯y(λ),ˆu=ˆu(λ),ˆy=ˆy(λ),ζ=(λ,u(λ), uπ(λ),y(λ)), ¯ζ=(λ,¯u(λ), ¯uπ(λ),¯y(λ)), ˆζ=(λ,ˆu(λ), ˆuπ(λ),ˆy(λ)).

    Definition 2.1. A pair (¯u,¯y)K is named a robust optimal point of (Prob) if

    AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλAmaxσΣΓ(ζ,σ)dλAminωΩΥ(ζ,ω)dλ,(u,y)K.

    Definition 2.2. A pair (¯u,¯y)K is named a robust optimal point of (NonFracProb) if

    AmaxσΣΓ(¯ζ,σ)dλVσ,ωAminωΩΥ(¯ζ,ω)dλAmaxσΣΓ(ζ,σ)dλVσ,ωAminωΩΥ(ζ,ω)dλ,(u,y)K.

    Remark 2.1. We notice K is the feasible solution set of (NonFracProb) and for (RobNonFracProb) .

    Remark 2.2. The robust-type optimal points of (Prob) or (NonFracProb) are robust optimal points of (RobProb) or (RobNonFracProb) .

    Next, to state the principal theorems of this paper, we formulate the definition of convex, (strictly, monotonic) quasi-convex, and concave multiple integral functionals (Mititelu and Treanţă [18]).

    Definition 2.3. A multiple integral functional AΓ(ζ,¯σ)dλ is named convex at (¯u,¯y)A×B if the following inequality holds

    AΓ(ζ,¯σ)dλAΓ(¯ζ,¯σ)dλA{(u¯u)Γu(¯ζ,¯σ)+(y¯y)Γy(¯ζ,¯σ)}dλ+A{(uπ¯uπ)Γuπ(¯ζ,¯σ)}dλ,(u,y)A×B.

    Definition 2.4. The functional AΓ(ζ,¯σ)dλ is named concave at (¯u,¯y)A×B if the below inequality is valid:

    AΓ(ζ,¯σ)dλAΓ(¯ζ,¯σ)dλA{(u¯u)Γu(¯ζ,¯σ)+(y¯y)Γy(¯ζ,¯σ)}dλ+A{(uπ¯uπ)Γuπ(¯ζ,¯σ)}dλ,(u,y)A×B.

    Definition 2.5. The functional AΓ(ζ,¯σ)dλ is named quasi-convex at (¯u,¯y)A×B if the below inequality

    AΓ(ζ,¯σ)dλAΓ(¯ζ,¯σ)dλ,

    implies

    A{(u¯u)Γu(¯ζ,¯σ)+(y¯y)Γy(¯ζ,¯σ)}dλ+A{(uπ¯uπ)Γuπ(¯ζ,¯σ)}dλ0,(u,y)A×B.

    Definition 2.6. The functional AΓ(ζ,¯σ)dλ is named strictly quasi-convex at (¯u,¯y)A×B if the below inequality

    AΓ(ζ,¯σ)dλAΓ(¯ζ,¯σ)dλ,

    implies

    A{(u¯u)Γu(¯ζ,¯σ)+(y¯y)Γy(¯ζ,¯σ)}dλ+A{(uπ¯uπ)Γuπ(¯ζ,¯σ)}dλ<0,(u,y)(¯u,¯y)A×B.

    Definition 2.7. The functional AΓ(ζ,¯σ)dλ is named monotonic quasi-convex at (¯u,¯y)A×B if the below inequality

    AΓ(ζ,¯σ)dλ=AΓ(¯ζ,¯σ)dλ,

    implies

    A{(u¯u)Γu(¯ζ,¯σ)+(y¯y)Γy(¯ζ,¯σ)}dλ+A{(uπ¯uπ)Γuπ(¯ζ,¯σ)}dλ=0,(u,y)A×B.

    In this section, under various variants of convexity, we state the robust-type optimality criteria of (Prob) . In addition, according to Treanţă [28], we introduce and characterize the notion of a robust Kuhn-Tucker point to (Prob) . This study is connected with Saeed [22], where the author considered robust-type optimality criteria of some extremization fractional models determined by path-independent curvilinear-type integrals (and not multiple integral functional as in this study), but without monotonic and/or quasi-convexity assumptions as in the present paper.

    To this aim, first, we establish an equivalence between (Prob) and (NonFracProb) (see, also, Sun et al. [23]).

    Proposition 3.1. Let (¯u,¯y)K be a robust-type optimal point of (Prob). In this case, there exists the positive scalar Vσ,ω, and (¯u,¯y)K becomes a robust-type optimal point of (NonFracProb). In addition, for (¯u,¯y)K as a robust-type optimal point of (NonFracProb) and Vσ,ω=AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ, then (¯u,¯y)K is a robust-type optimal point of (Prob).

    Proof. By contrast, let us assume that there exists (u,y)K fulfilling

    AmaxσΣΓ(ζ,σ)dλVσ,ωAminωΩΥ(ζ,ω)dλ<AmaxσΣΓ(¯ζ,σ)dλVσ,ωAminωΩΥ(¯ζ,ω)dλ.

    Now, if we take Vσ,ω=AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ, we get

    AmaxσΣΓ(ζ,σ)dλAmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλAminωΩΥ(ζ,ω)dλ<AmaxσΣΓ(¯ζ,σ)dλAmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλAminωΩΥ(¯ζ,ω)dλ,

    which is equivalent with

    AmaxσΣΓ(ζ,σ)dλAminωΩΥ(ζ,ω)dλ<AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ,

    and this is a contradiction with (¯u,¯y) as a robust-type optimal point of (Prob) .

    Conversely, consider (¯u,¯y)K is a robust-type optimal point of (NonFracProb) , with

    Vσ,ω=AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ,

    and assume that (¯u,¯y)K is not a robust-type optimal point of (Prob) , involving there exists (u,y)K fulfilling

    AmaxσΣΓ(ζ,σ)dλAminωΩΥ(ζ,ω)dλ<AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ,

    or, in an equivalent manner,

    AmaxσΣΓ(ζ,σ)dλVσ,ωAminωΩΥ(ζ,ω)dλ<0,

    or, equivalently,

    AmaxσΣΓ(ζ,σ)dλVσ,ωAminωΩΥ(ζ,ω)dλ<AmaxσΣΓ(¯ζ,σ)dλVσ,ωAminωΩΥ(¯ζ,ω)dλ,

    which is a contradiction with (¯u,¯y)K as a robust-type optimal point of (NonFracProb) .

    Next, we establish the robust-type necessary criteria for optimality of (Prob) .

    Theorem 3.1. If (ˉu,ˉy)K is a robust-type optimal point of (Prob) and maxσΣΓ(ζ,σ)=Γ(ζ,ˉσ), minωΩΥ(ζ,ω)=Υ(ζ,ˉω), then there exist ˉνR and ˉf=(ˉρβ(λ))Rq+,ˉg=(ˉλιπ(λ))Rnm (piecewise differentiable functions), satisfying

    ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)λπ{ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}=0, (3.1)
    ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)=0, (3.2)
    ˉfTM(ˉζ)=0,ˉρβ0,β=¯1,q, (3.3)
    ˉν0, (3.4)

    for λA, except at discontinuities.

    Proof. We define ˉu(λ)+ε1h(λ) and ˉy(λ)+ε2m(λ) as some variations for ˉu(λ) and ˉy(λ), respectively, where ε1,ε2 are the variational parameters, and h,m are some smooth functions with limit constraints (see below). Therefore, we obtain the functions depending on (ε1,ε2), defined as

    E(ε1,ε2)=A[Γ(λ,ˉu(λ)+ε1h(λ),ˉuπ(λ)+ε1hπ(λ)ˉy(λ)+ε2m(λ),ˉσ)Vσ,ωΥ(λ,ˉu(λ)+ε1h(λ),ˉuπ(λ)+ε1hπ(λ),ˉy(λ)+ε2m(λ),ˉω)]dλ,Z(ε1,ε2)=AM(λ,ˉu(λ)+ε1h(λ),ˉuπ(λ)+ε1hπ(λ)ˉy(λ)+ε2m(λ))dλ,

    and

    J(ε1,ε2)=AN(λ,ˉu(λ)+ε1h(λ),ˉuπ(λ)+ε1hπ(λ)ˉy(λ)+ε2m(λ))dλ.

    Since, by hypothesis, the pair (ˉu,ˉy) is a robust-type optimal point of (Prob) , therefore, the pair (0,0) is an optimal solution of

    minε1,ε2E(ε1,ε2),

    subject to

    Z(ε1,ε2)0,J(ε1,ε2)=0,
    h(λ0)=h(λ1)=m(λ0)=m(λ1)=0.

    Thus, there exist ˉνR, ˉf=(ˉfβ(λ))Rq+,ˉg=(ˉgιπ(λ))Rnm, fulfilling

    ˉνE(0,0)+ˉfTZ(0,0)+ˉgTJ(0,0)=0, (*)
    ˉfTZ(0,0)=0,ˉf0,
    ˉν0,

    (see ϕ(x1,x2) as the gradient of ϕ at (x1,x2)). The first relation fomulated in () is rewritten as

    A[ˉν(ΓˉuιVσ,ωΥˉuι)hι+ˉν(ΓˉuιπVσ,ωΥˉuιπ)hιπ+ˉfTMˉuιhι+ˉfTMˉuιπhιπ+ˉgTNˉuιhι+ˉgTNˉuιπhιπ]dλ=0,A[ˉν(ΓˉyjVσ,ωΥˉyj)mj+ˉfTMˉyjmj+ˉgTNˉyjmj]dλ=0,

    or, as follows,

    A[ˉν(ΓˉuιVσ,ωΥˉuι)λπˉν(ΓˉuιπVσ,ωΥˉuιπ)+ˉfTMˉuιλπˉfTMˉuιπ+ˉgTNˉuιλπˉgTNˉuιπ]hιdλ=0,A[ˉν(ΓˉyjVσ,ωΥˉyj)+ˉfTMˉyj+ˉgTNˉyj]mjdλ=0,

    where we used the divergence formula, boundary conditions, and the method of integration by parts.

    In the following, by using a fundamental lemma, we get

    ˉν(ΓˉuιVσ,ωΥˉuι)λπˉν(ΓˉuιπVσ,ωΥˉuιπ)+ˉfTMˉuιλπˉfTMˉuιπ+ˉgTNˉuιλπˉgTNˉuιπ=0,ι=¯1,n,ˉν(ΓˉyjVσ,ωΥˉyj)+ˉfTMˉyj+ˉgTNˉyj=0,j=¯1,l,

    or

    ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)λπ{ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}=0,ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)=0.

    The second expression given in (),

    ˉfTZ(0,0)=0,ˉf0,
    ˉν0,

    involves

    ˉfTM(ˉζ)=0,ˉf0,
    ˉν0,

    and we complete the proof.

    Remark 3.1. The conditions (3.1)(3.4) are named robust-type necessary optimality criteria of (Prob) .

    Definition 3.1. The pair (ˉu,ˉy)K is named a normal robust-type optimal point of (Prob) if ˉν>0.

    Next, on the line of Treanţă [28], we introduce and describe the robust-type Kuhn-Tucker point of (Prob) .

    Definition 3.2. Let maxσΣΓ(ζ,σ)=Γ(ζ,ˉσ), minωΩΥ(ζ,ω)=Υ(ζ,ˉω). The robust feasible solution (ˉu,ˉy) is named a robust Kuhn-Tucker point of (Prob) if there exist the piecewise differentiable functions ˉf=(ˉρβ(λ))Rq+,ˉg=(ˉλιπ(λ))Rnm, satisfying

    Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)λπ{Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}=0,Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)=0,ˉfTM(ˉζ)=0,ˉρβ0,β=¯1,q,

    for λA, except at discontinuities.

    Theorem 3.2. If (ˉu,ˉy)K is a normal robust-type optimal point of (Prob), with maxσΣΓ(ζ,σ)=Γ(ζ,ˉσ), minωΩΥ(ζ,ω)=Υ(ζ,ˉω), then (ˉu,ˉy)K is a robust-type Kuhn-Tucker point for (Prob).

    Proof. For maxσΣΓ(ζ,σ)=Γ(ζ,ˉσ), minωΩΥ(ζ,ω)=Υ(ζ,ˉω), since (ˉu,ˉy)K is a robust-type optimal point of (Prob) (see Theorem 3.1), there exist ˉνR and ˉf=(ˉρβ(λ))Rq+,ˉg=(ˉλιπ(λ))Rnm, satisfying

    ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)λπ{ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}=0,ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)=0,ˉfTM(ˉζ)=0,ˉρβ0,β=¯1,q,ˉν0,

    for λA, except at discontinuities. Since the pair (ˉu,ˉy)K is considered a normal robust-type optimal point, we define ˉν=1>0.

    A first result regarding the robust-type sufficient criteria of (Prob) is formulated below.

    Theorem 3.3. If maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), the relations (3.1)(3.4) are satisfied, the functionals AˉνΓ(ζ,¯σ)dλ, A¯fTM(ζ)dλ, and A¯gTN(ζ)dλ are convex at (¯u,¯y)K, and AˉνΥ(ζ,¯ω)dλ is concave at (¯u,¯y)K, then (¯u,¯y)K is a robust-type optimal point of (Prob).

    Proof. By contrary (see also Proposition 3.1), there exists (u,y)K fulfilling

    AmaxσΣΓ(ζ,σ)dλVσ,ωAminωΩΥ(ζ,ω)dλ<AmaxσΣΓ(¯ζ,σ)dλVσ,ωAminωΩΥ(¯ζ,ω)dλ,

    and by taking maxσΣΓ(ζ,σ)=Γ(ζ,¯σ) and minωΩΥ(ζ,ω)=Υ(ζ,¯ω), we obtain

    AΓ(ζ,¯σ)dλVσ,ωAΥ(ζ,¯ω)dλ<AΓ(¯ζ,¯σ)dλVσ,ωAΥ(¯ζ,¯ω)dλ. (3.5)

    By considering the hypotheses imposed to the functionals AˉνΓ(ζ,¯σ)dλ and AˉνΥ(ζ,¯ω)dλ, it follows that

    AˉνΓ(ζ,¯σ)dλAˉνΓ(¯ζ,¯σ)dλA{(u¯u)ˉνΓu(¯ζ,¯σ)+(y¯y)ˉνΓy(¯ζ,¯σ)}dλ+A{(uπ¯uπ)ˉνΓuπ(¯ζ,¯σ)}dλ, (3.6)

    and

    AˉνΥ(ζ,¯ω)dλAˉνΥ(¯ζ,¯ω)dλA{(u¯u)ˉνΥu(¯ζ,¯ω)+(y¯y)ˉνΥy(¯ζ,¯ω)}dλ+A{(uπ¯uπ)ˉνΥuπ(¯ζ,¯ω)}dλ. (3.7)

    By multiplying (3.7) with Vσ,ω and subtracting it from (3.6), we get

    AˉνΓ(ζ,¯σ)dλVσ,ωAˉνΥ(ζ,¯ω)dλAˉνΓ(¯ζ,¯σ)dλ+Vσ,ωAˉνΥ(¯ζ,¯ω)}dλA(u¯u)ˉνΓu(¯ζ,¯σ)dλVσ,ωA(u¯u)ˉνΥu(¯ζ,¯ω)dλ+A(y¯y)ˉνΓy(¯ζ,¯σ)dλVσ,ωA(y¯y)ˉνΥy(¯ζ,¯ω)dλ+A(uπ¯uπ)ˉνΓuπ(¯ζ,¯σ)dλVσ,ωA(uπ¯uπ)ˉνΥuπ(¯ζ,¯ω)dλ,

    and, by (3.5), it follows that

    A(u¯u)ˉνΓu(¯ζ,¯σ)dλVσ,ωA(u¯u)ˉνΥu(¯ζ,¯ω)dλ+A(y¯y)ˉνΓy(¯ζ,¯σ)dλVσ,ωA(y¯y)ˉνΥy(¯ζ,¯ω)dλ+A(uπ¯uπ)ˉνΓuπ(¯ζ,¯σ)dλVσ,ωA(uπ¯uπ)ˉνΥuπ(¯ζ,¯ω)dλ<0. (3.8)

    Also, since the functionals A¯fTM(ζ)dλ and A¯gTN(ζ)dλ are convex at (¯u,¯y)K, we obtain

    A{¯fTM(ζ)¯fTM(ˉζ)}dλA(u¯u)¯fTMu(¯ζ)dλ+A(y¯y)¯fTMy(¯ζ)dλ+A(uπ¯uπ)¯fTMuπ(¯ζ)dλ

    and

    A{¯gTN(ζ)¯gTN(ˉζ)}dλA(u¯u)¯gTNu(¯ζ)dλ+A(y¯y)¯gTNy(¯ζ)dλ+A(uπ¯uπ)¯gTNuπ(¯ζ)dλ.

    By employing the feasibility property of (u,y) in (Prob) and relations (3.1)(3.4), it results in

    A(u¯u)¯fTMu(¯ζ)dλ+A(y¯y)¯fTMy(¯ζ)dλ+A(uπ¯uπ)¯fTMuπ(¯ζ)dλ0 (3.9)

    and

    A(u¯u)¯gTNu(¯ζ)dλ+A(y¯y)¯gTNy(¯ζ)dλ+A(uπ¯uπ)¯gTNuπ(¯ζ)dλ0. (3.10)

    On adding (3.8), (3.9), and (3.10), we get

    A(u¯u)ˉνΓu(¯ζ,¯σ)dλVσ,ωA(u¯u)ˉνΥu(¯ζ,¯ω)dλ+A(y¯y)ˉνΓy(¯ζ,¯σ)dλVσ,ωA(y¯y)ˉνΥy(¯ζ,¯ω)dλ+A(uπ¯uπ)ˉνΓuπ(¯ζ,¯σ)dλVσ,ωA(uπ¯uπ)ˉνΥuπ(¯ζ,¯ω)dλ+A(u¯u)¯fTMu(¯ζ)dλ+A(y¯y)¯fTMy(¯ζ)dλ+A(uπ¯uπ)¯fTMuπ(¯ζ)dλ+A(u¯u)¯gTNu(¯ζ)dλ+A(y¯y)¯gTNy(¯ζ)dλ+A(uπ¯uπ)¯gTNuπ(¯ζ)dλ<0. (3.11)

    Further, after multiplying (3.1) and (3.2) with (u¯u) and (y¯y), respectively, integrating them, and adding the results, we obtain

    A(u¯u)ˉνΓu(¯ζ,¯σ)dλVσ,ωA(u¯u)ˉνΥu(¯ζ,¯ω)dλ+A(y¯y)ˉνΓy(¯ζ,¯σ)dλVσ,ωA(y¯y)ˉνΥy(¯ζ,¯ω)dλ+A(uπ¯uπ)ˉνΓuπ(¯ζ,¯σ)dλVσ,ωA(uπ¯uπ)ˉνΥuπ(¯ζ,¯ω)dλ+A(u¯u)¯fTMu(¯ζ)dλ+A(y¯y)¯fTMy(¯ζ)dλ+A(uπ¯uπ)¯fTMuπ(¯ζ)dλ+A(u¯u)¯gTNu(¯ζ)dλ+A(y¯y)¯gTNy(¯ζ)dλ+A(uπ¯uπ)¯gTNuπ(¯ζ)dλ=0,

    which contradicts (3.11). The proof is complete.

    Next, a second result is established on the robust-type sufficiency criteria of the considered extremization model, under only convexity hypotheses of the involved functionals.

    Theorem 3.4. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    Aˉν[Γ(ζ,ˉσ)Vσ,ωΥ(ζ,ˉω)]dλ,AˉfTM(ζ)dλ,AˉgTN(ζ)dλ

    are convex at (ˉu,ˉy)K, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. By contrast, let us suppose that (ˉu,ˉy) is not a robust-type optimal point of (Prob) . Thus, there exists (ˆu,ˆy)K with the property (see Proposition 3.1),

    AmaxσΣΓ(ˆζ,σ)dλVσ,ωAminωΩΥ(ˆζ,ω)dλ<AmaxσΣΓ(ˉζ,σ)dλVσ,ωAminωΩΥ(ˉζ,ω)dλ.

    By considering maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), we get

    AΓ(ˆζ,ˉσ)dλVσ,ωAΥ(ˆζ,ˉω)dλ<AΓ(ˉζ,ˉσ)dλVσ,ωAΥ(ˉζ,ˉω)dλ. (3.12)

    Since (ˉu,ˉy) fulfills (3.1)(3.4), we get

    A(ˆuˉu){ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)λπ[ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)]}dλ+A(ˆyˉy){ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)}dλ=A[(ˆuˉu){ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)}+(ˆuπˉuπ){ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}]dλ+A(ˆyˉy){ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)}dλ=0, (3.13)

    by using the divergence formula, the boundary conditions, and the method of integration by parts.

    Also, since Aˉν[Γ(ζ,ˉσ)Vσ,ωΥ(ζ,ˉω)]dλ is convex at (ˉu,ˉy), we get

    A{ˉν[Γ(ˆζ,ˉσ)Vσ,ωΥ(ˆζ,ˉω)]ˉν[Γ(ˉζ,ˉσ)Vσ,ωΥ(ˉζ,ˉω)]}dλA(ˆuˉu)ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]dλ+A(ˆuπˉuπ)ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]dλ+A(ˆyˉy)ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]dλ,

    and, by (3.12), it results in

    A(ˆuˉu)ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]dλ+A(ˆuπˉuπ)ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]dλ+A(ˆyˉy)ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]dλ<0. (3.14)

    Now, by convexity property of AˉfTM(ζ)dλ at (ˉu,ˉy), we obtain

    A{ˉfTM(ˆζ)ˉfTM(ˉζ)}dλA(ˆuˉu)ˉfTMu(ˉζ)dλ+A(ˆuπˉuπ)ˉfTMuπ(ˉζ)dλ+A(ˆyˉy)ˉfTMy(ˉζ)dλ,

    which by robust feasibility of (ˆu,ˆy) for (Prob) and (3.3) gives

    A(ˆuˉu)ˉfTMu(ˉζ)dλ+A(ˆuπˉuπ)ˉfTMuπ(ˉζ)dλ+A(ˆyˉy)ˉfTMy(ˉζ)dλ0. (3.15)

    Further, in the same manner, we obtain

    A(ˆuˉu)ˉgTNu(ˉζ)dλ+A(ˆuπˉuπ)ˉgTNuπ(ˉζ)dλ+A(ˆyˉy)ˉgTNy(ˉζ)dλ0. (3.16)

    Finally, by adding (3.14), (3.15), and (3.16), it follows that

    A[(ˆuˉu){ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)}+(ˆuπˉuπ){ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}]dλ+A(ˆyˉy){ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)}dλ<0,

    which contradicts (3.13).

    Next, under only (strictly, monotonic) quasi-convexity assumptions, new robust-type sufficient optimality criteria are stated.

    Theorem 3.5. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[Γ(ζ,ˉσ)Vσ,ωΥ(ζ,ˉω)]dλ,Y(u,y):=AˉfTM(ζ)dλ

    are quasi-convex and strictly quasi-convex at (ˉu,ˉy)K, respectively, and X(u,y):=AˉgTN(ζ)dλ is monotonic quasi-convex at (ˉu,ˉy)K, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. Consider (ˉu,ˉy) is not a robust-type optimal point of (Prob) , and define the set (nonempty)

    S={(u,y)K|F(u,y;ˉσ,ˉω)F(ˉu,ˉy;ˉσ,ˉω),X(u,y)=X(ˉu,ˉy),Y(u,y)Y(ˉu,ˉy)}.

    By hypothesis, for (u,y)S, we get

    F(u,y;ˉσ,ˉω)F(ˉu,ˉy;ˉσ,ˉω)A{ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)](uˉu)+ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)](yˉy)}dv+A{ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)](uπˉuπ)}dv0. (3.17)

    For (u,y)S, the equality X(u,y)=X(ˉu,ˉy) holds and it follows

    A{ˉgTNu(ˉζ)(uˉu)+ˉgTNy(ˉζ)(yˉy)}dv+A{ˉgTNuπ(ˉζ)(uπˉuπ)}dv=0. (3.18)

    Also, for (u,y)S, the inequality Y(u,y)Y(ˉu,ˉy) gives

    A{ˉfTMu(ˉζ)(uˉu)+ˉfTMy(ˉζ)(yˉy)}dv+A{ˉfTMuπ(ˉζ)(uπˉuπ)}dv<0. (3.19)

    Since(ˉu,ˉy) fulfills (3.1)(3.4), we get

    A(uˉu){ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)λπ[ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)]}dλ+A(yˉy){ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)}dλ=A[(uˉu){ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)}+(uπˉuπ){ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}]dλ+A(yˉy){ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)}dλ=0, (3.20)

    by using the divergence formula, the boundary conditions, and the method of integration by parts. Now, by adding (3.17), (3.18), and (3.19), we obtain

    A[(uˉu){ˉν[Γu(ˉζ,ˉσ)Vσ,ωΥu(ˉζ,ˉω)]+ˉfTMu(ˉζ)+ˉgTNu(ˉζ)}+(uπˉuπ){ˉν[Γuπ(ˉζ,ˉσ)Vσ,ωΥuπ(ˉζ,ˉω)]+ˉfTMuπ(ˉζ)+ˉgTNuπ(ˉζ)}]dλ+A(yˉy){ˉν[Γy(ˉζ,ˉσ)Vσ,ωΥy(ˉζ,ˉω)]+ˉfTMy(ˉζ)+ˉgTNy(ˉζ)}dλ<0,

    which contradicts (3.20).

    Various consequences associated with the abovementioned result are written as follows.

    Theorem 3.6. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[Γ(ζ,ˉσ)Vσ,ωΥ(ζ,ˉω)]dλ,Y(u,y):=AˉfTM(ζ)dλ

    are strictly quasi-convex and quasi-convex at (ˉu,ˉy)K, respectively, and X(u,y):=AˉgTN(ζ)dλ is monotonic quasi-convex at (ˉu,ˉy)K, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. In the proof of Theorem 3.5, we replace "" in (3.17) with "<", and "<" in (3.19) with "".

    Theorem 3.7. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[˜Υ(¯ζ,ˉσ)Γ(ζ,ˉσ)˜Γ(¯ζ,ˉσ)Υ(ζ,ˉω)]dλ,Y(u,y):=AˉfTM(ζ)dλ

    are quasi-convex and strictly quasi-convex at (ˉu,ˉy)K, respectively, and X(u,y):=AˉgTN(ζ)dλ is monotonic quasi-convex at (ˉu,ˉy)K, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. In the proof of Theorem 3.5, we replace Vσ,ω=AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ:=˜Γ(¯ζ,ˉσ)˜Υ(¯ζ,ˉσ).

    Theorem 3.8. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[˜Υ(¯ζ,ˉσ)Γ(ζ,ˉσ)˜Γ(¯ζ,ˉσ)Υ(ζ,ˉω)]dλ,Y(u,y):=AˉfTM(ζ)dλ

    are strictly quasi-convex and quasi-convex at (ˉu,ˉy)K, respectively, and X(u,y):=AˉgTN(ζ)dλ is monotonic quasi-convex at (ˉu,ˉy)K, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. In the proof of Theorem 3.5, we replace Vσ,ω=AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ:=˜Γ(¯ζ,ˉσ)˜Υ(¯ζ,ˉσ), "" in (3.17) with "<", and "<" in (3.19) with "".

    Theorem 3.9. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[Γ(ζ,ˉσ)Vσ,ωΥ(ζ,ˉω)]dλ,
    ˜Y(u,y):=A[ˉfTM(ζ)+ˉgTN(ζ)]dλ

    are quasi-convex and strictly quasi-convex at (ˉu,ˉy)K, respectively, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. In the proof of Theorem 3.5, we consider "<" in (3.18) and (3.19), then we add them.

    Theorem 3.10. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[Γ(ζ,ˉσ)Vσ,ωΥ(ζ,ˉω)]dλ,
    ˜Y(u,y):=A[ˉfTM(ζ)+ˉgTN(ζ)]dλ

    are strictly quasi-convex and quasi-convex at (ˉu,ˉy)K, respectively, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. In the proof of Theorem 3.5, we consider "<" in (3.17), and "" in (3.18) and (3.19), then we add them.

    Theorem 3.11. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[˜Υ(¯ζ,ˉσ)Γ(ζ,ˉσ)˜Γ(¯ζ,ˉσ)Υ(ζ,ˉω)]dλ,
    ˜Y(u,y):=A[ˉfTM(ζ)+ˉgTN(ζ)]dλ

    are quasi-convex and strictly quasi-convex at (ˉu,ˉy)K, respectively, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. In the proof of Theorem 3.5, we replace Vσ,ω=AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ:=˜Γ(¯ζ,ˉσ)˜Υ(¯ζ,ˉσ), and consider "<" in (3.18) and (3.19), then we add them.

    Theorem 3.12. If (ˉu,ˉy)K and (3.1)(3.4) are satisfied, maxσΣΓ(ζ,σ)=Γ(ζ,¯σ), minωΩΥ(ζ,ω)=Υ(ζ,¯ω), and

    F(u,y;ˉσ,ˉω):=Aˉν[˜Υ(¯ζ,ˉσ)Γ(ζ,ˉσ)˜Γ(¯ζ,ˉσ)Υ(ζ,ˉω)]dλ,
    ˜Y(u,y):=A[ˉfTM(ζ)+ˉgTN(ζ)]dλ

    are strictly quasi-convex and quasi-convex at (ˉu,ˉy)K, respectively, then (ˉu,ˉy) is a robust-type optimal point of (Prob).

    Proof. In the proof of Theorem 3.5, we replace Vσ,ω=AmaxσΣΓ(¯ζ,σ)dλAminωΩΥ(¯ζ,ω)dλ:=˜Γ(¯ζ,ˉσ)˜Υ(¯ζ,ˉσ), "" in (3.17) with "<", and consider "" in (3.18) and (3.19), then we add them.

    The following application presents the practical aspect of the theoretical developments given in the previous sections. In this regard, we consider we have interest only in affine control and state functions, Σ=Ω=[1,2], and AR2 is a square having the corners λ0=(λ10,λ20)=(0,0) and λ1=(λ21,λ21)=(12,12)R2. We consider the following extremization fractional model:

    (Prob1)min(u(),y()){AΓ(ζ,σ)dλ1dλ2AΥ(ζ,ω)dλ1dλ2=A[y2+σ]dλ1dλ2A[ωue2u+12]dλ1dλ2},

    subject to

    M(ζ)=u2+u20,Nπ(ζ)=uλπ+2y1=0,π=1,2,u(12,12)=13,u(0,0)=1.

    The nonfractional extremization model for (Prob1) is formulated by:

    (NonFracProb1)min(u(),y()){A[y2+σ]dλ1dλ2Vσ,ωA[ωue2u+12]dλ1dλ2},

    subject to

    M(ζ)=u2+u20,Nπ(ζ)=uλπ+2y1=0,π=1,2,u(12,12)=13,u(0,0)=1,

    and the associated robust-type counterpart of (NonFracProb1) is introduced as:

    (RobNonFracProb1)min(u(),y()){AmaxσΣ[y2+σ]dλ1dλ2Vσ,ωAminωΩ[ωue2u+12]dλ1dλ2},

    subject to

    M(ζ)=u2+u20,Nπ(ζ)=uλπ+2y1=0,π=1,2,u(0,0)=1,u(12,12)=13.

    The robust-type feasible solution set of (NonFracProb1) is

    K={(u,y)A×B:2u1,uλ1=uλ2=12y,u(12,12)=13,u(0,0)=1},

    and we obtain (¯u,¯y)=(23(λ1+λ2)+1,56)K, which satisfies (3.1)(3.4) at λ1=λ2=0, with Vσ,ω=16936e52, the parameters ¯σ=2,¯ω=1, and ¯ν=12,¯f=0,¯g1=¯g2=524. Further, it can also be easily verified that the involved functionals Aˉν[Γ(ζ,ˉσ)Vσ,ωΥ(ζ,ˉω)]dλ1dλ2,AˉfTM(ζ)dλ1dλ2,AˉgTN(ζ)dλ1dλ2 are convex at (¯u,¯y)=(1,56)K. As the hypotheses in Theorem 3.4 are fulfilled, we can conclude that (¯u,¯y) is a robust-type optimal point of (NonFracProb1). Now, applying Proposition 3.1, we get (¯u,¯y) is also a robust optimal solution to (Prob1).

    In this paper, a multidimensional fractional variational control problem with data uncertainty in the cost functional has been studied. In this regard, under the various forms of convexity for the considered functionals, we have stated the associated robust-type optimality criteria. The main results of the paper are validated with an appropriate illustrative example.

    The authors declare they have not used Artificial Intelligence (AI) tools in writing the paper.

    The author declares no conflict of interest.



    [1] T. Antczak, Parametric approach for approximate efficiency of robust multiobjective fractional programming problems, Math. Methods Appl. Sci., 44 (2021), 11211–11230. https://doi.org/10.1002/mma.7482 doi: 10.1002/mma.7482
    [2] T. Antczak, A. Pitea, Parametric approach to multitime multiobjective fractional variational problems under (f, ρ)-convexity, Optimal Control Appl. Methods, 37 (2016), 831–847. http://dx.doi.org/10.1002/oca.2192 doi: 10.1002/oca.2192
    [3] A. Baranwal, A. Jayswal, Preeti, Robust duality for the uncertain multitime control optimization problems, Internat. J. Robust Nonlinear Control, 32 (2022), 5837–5847. https://doi.org/10.1002/rnc.6113 doi: 10.1002/rnc.6113
    [4] A. Beck, A. Ben-Tal, Duality in robust optimization: Primal worst equals dual best, Oper. Res. Lett., 37 (2009), 1–6. https://doi.org/10.1016/j.orl.2008.09.010 doi: 10.1016/j.orl.2008.09.010
    [5] W. Dinkelbach, On nonlinear fractional programming, Manag. Sci., 13 (1967), 492–498.
    [6] Y. Guo, G. Ye, W. Liu, D. Zhao, S. Treanţă, Optimality conditions and duality for a class of generalized convex interval-valued optimization problems, Mathematics, 9 (2021), 2979. https://doi.org/10.3390/math9222979 doi: 10.3390/math9222979
    [7] R. Jagannathan, Duality for nonlinear fractional programs, Zeitschrift fuer Oper. Res., 17 (1973), 1–3. https://doi.org/10.1007/BF01951364 doi: 10.1007/BF01951364
    [8] A. Jayswal, Preeti, M. A. Jiménez, An exact l1 penalty function method for a multitime control optimization problem with data uncertainty, Optim. Control Appl. Methods., 41 (2020), 1705–1717. https://doi.org/10.1002/oca.2634 doi: 10.1002/oca.2634
    [9] A. Jayswal, Preeti, M. A. Jiménez, Robust penalty function method for an uncertain multi-time control optimization problems, J. Math. Anal. Appl., 505 (2022), 125453. https://doi.org/10.1016/j.jmaa.2021.125453 doi: 10.1016/j.jmaa.2021.125453
    [10] V. Jeyakumar, G. Li, G.M. Lee, Robust duality for generalized convex programming problems under data uncertainty, Nonlinear Anal., 75 (2012), 1362–1373. https://doi.org/10.1016/j.na.2011.04.006 doi: 10.1016/j.na.2011.04.006
    [11] G. S. Kim, M. H. Kim, On sufficiency and duality for fractional robust optimization problems involving (V, ρ)-invex function, East Asian Math. J., 32 (2016), 635–639. https://doi.org/10.7858/eamj.2016.043 doi: 10.7858/eamj.2016.043
    [12] M. H. Kim, G. A. Kim, On optimality and duality for generalized fractional robust optimization problems, East Asian Math. J., 31 (2015), 737–742. http://dx.doi.org/10.7858/eamj.2015.054 doi: 10.7858/eamj.2015.054
    [13] M. H. Kim, G. S. Kim, Optimality conditions and duality in fractional robust optimization problems, East Asian Math. J., 31 (2015), 345–349. https://doi.org/10.7858/eamj.2015.025 doi: 10.7858/eamj.2015.025
    [14] Z. Lu, Y. Zhu, Q. Lu, Stability analysis of nonlinear uncertain fractional differential equations with Caputo derivative, Fractals, 29 (2021), 2150057. https://doi.org/10.1142/S0218348X21500572 doi: 10.1142/S0218348X21500572
    [15] S. S. Manesh, M. Saraj, M. Alizadeh, M. Momeni, On robust weakly ϵ-efficient solutions for multi-objective fractional programming problems under data uncertainty, AIMS Mathematics, 7 (2021), 2331–2347. https://doi.org/10.3934/math.2022132 doi: 10.3934/math.2022132
    [16] N. B. Minh, T. T. T. Phuong, Robust equilibrium in transportation networks, Acta Math. Vietnam., 45 (2020), 635–650. https://doi.org/10.1007/s40306-018-00320-3 doi: 10.1007/s40306-018-00320-3
    [17] Ş. Mititelu, Efficiency and duality for multiobjective fractional variational problems with (ρ, b)-quasiinvexity, Yugosl. J. Oper. Res., 19 (2016).
    [18] Ş. Mititelu, S. Treanţă, Efficiency conditions in vector control problems governed by multiple integrals, J. Appl. Math. Comput., 57 (2018), 647–665. https://doi.org/10.1007/s12190-017-1126-z doi: 10.1007/s12190-017-1126-z
    [19] C. Nahak, Duality for multiobjective variational control and multiobjective fractional variational control problems with pseudoinvexity, Int. J. Stoch. Anal., 2006 (2006), 062631. https://doi.org/10.1155/JAMSA/2006/62631 doi: 10.1155/JAMSA/2006/62631
    [20] R. B. Patel, Duality for multiobjective fractional variational control problems with (F, ρ)-convexity, Int. J. Stat. Manag. Syst., 3 (2000), 113–134. https://doi.org/10.1080/09720510.2000.10701010 doi: 10.1080/09720510.2000.10701010
    [21] T. Saeed, S. Treanţă, On sufficiency conditions for some robust variational control problems, Axioms, 12 (2023), 705. https://doi.org/10.3390/axioms12070705 doi: 10.3390/axioms12070705
    [22] T. Saeed, Robust optimality conditions for a class of fractional optimization problems, Axioms, 12 (2023), 673. https://doi.org/10.3390/axioms12070673 doi: 10.3390/axioms12070673
    [23] X. Sun, X. Feng, K. L. Teo, Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data, Optim. Lett., 16 (2022), 1457–1476. https://doi.org/10.1007/s11590-021-01785-2 doi: 10.1007/s11590-021-01785-2
    [24] X. Sun, K. L. Teo, X. J. Long, Some characterizations of approximate solutions for robust semi-infinite optimization problems, J. Optim. Theory Appl., 191 (2021), 281–310. https://doi.org/10.1007/s10957-021-01938-4 doi: 10.1007/s10957-021-01938-4
    [25] X. Sun, W. Tan, K. L. Teo, Characterizing a class of robust vector polynomial optimization via sum of squares conditions, J. Optim. Theory Appl., 197 (2023), 737–764. https://doi.org/10.1007/s10957-023-02184-6 doi: 10.1007/s10957-023-02184-6
    [26] X. Sun, K. L. Teo, J. Zeng, X. L. Guo, On approximate solutions and saddle point theorems for robust convex optimization, Optim. Lett., 14 (2020), 1711–1730. https://doi.org/10.1007/s11590-019-01464-3 doi: 10.1007/s11590-019-01464-3
    [27] S. Treanţă, Efficiency in uncertain variational control problems, Neural. Comput. Appl., 33 (2021), 5719–5732. https://doi.org/10.1007/s00521-020-05353-0 doi: 10.1007/s00521-020-05353-0
    [28] S. Treanţă, Necessary and sufficient optimality conditions for some robust variational problems, Optim. Control Appl. Methods, 44 (2023), 81–90. https://doi.org/10.1002/oca.2931 doi: 10.1002/oca.2931
    [29] H. C. Wu, Duality theory for optimization problems with interval-valued objective functions, J. Optim. Theory Appl., 144 (2010), 615–628. https://doi.org/10.1007/s10957-009-9613-5 doi: 10.1007/s10957-009-9613-5
    [30] J. Zhang, S. Liu, L. Li, Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607–631. https://doi.org/10.1007/s11590-012-0601-6 doi: 10.1007/s11590-012-0601-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(689) PDF downloads(33) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog