Research article

Semi-$ (E, F) $-convexity in complex programming problems

  • Received: 15 December 2021 Revised: 13 March 2022 Accepted: 29 March 2022 Published: 08 April 2022
  • MSC : 32C15, 90C25, 90C30, 90C46

  • Under recent circulars on the notions of convexity for real sets and functions like $ E $-convexity and $ (E, F) $-convexity, we expand the notions of $ (E, F) $ and semi-$ (E, F) $-convexity to include domains and functions in complex space. We examine their properties and interrelationships. As a consequence, we apply the associated results on a non-linear semi-$ (E, F) $-convex programming problem with cone-constraints in complex space. We discuss the existence and uniqueness of its optimal solution and establish the necessary and sufficient conditions for a feasible point to be an optimal solution to such a problem. The related results in real space can be deduced as special cases.

    Citation: M. E. Elbrolosy. Semi-$ (E, F) $-convexity in complex programming problems[J]. AIMS Mathematics, 2022, 7(6): 11119-11131. doi: 10.3934/math.2022621

    Related Papers:

  • Under recent circulars on the notions of convexity for real sets and functions like $ E $-convexity and $ (E, F) $-convexity, we expand the notions of $ (E, F) $ and semi-$ (E, F) $-convexity to include domains and functions in complex space. We examine their properties and interrelationships. As a consequence, we apply the associated results on a non-linear semi-$ (E, F) $-convex programming problem with cone-constraints in complex space. We discuss the existence and uniqueness of its optimal solution and establish the necessary and sufficient conditions for a feasible point to be an optimal solution to such a problem. The related results in real space can be deduced as special cases.



    加载中


    [1] E. Youness, $E$-convex sets, $E$-convex functions, and $E$-convex programming, J. Optimiz. Theory Appl., 102 (1999), 439–450. http://dx.doi.org/10.1023/A:1021792726715 doi: 10.1023/A:1021792726715
    [2] E. Youness, Quasi and strictly quasi $E$-convex functions, J. stat. manag. syst., 4 (2001), 201–210. http://dx.doi.org/10.1080/09720510.2001.10701038 doi: 10.1080/09720510.2001.10701038
    [3] X. Chen, Some properties of semi-$E$-convex functions, J. Math. Anal. Appl., 275 (2002), 251–262. http://dx.doi.org/10.1016/S0022-247X(02)00325-6 doi: 10.1016/S0022-247X(02)00325-6
    [4] J. Jain, Q. Hu, C. Tang, H. Zheng, Semi-$(E, F)$-convex functions and semi-$(E, F)$-convex programming, Inter. J. Pure. Appl. Math., 14 (2004), 439–454.
    [5] E. Youness, T. Emam, Strongly $E$-convex sets and strongly $E$-convex functions, J. Interdiscip. Math., 8 (2005), 107–117. http://dx.doi.org/10.1080/09720502.2005.10700394 doi: 10.1080/09720502.2005.10700394
    [6] D. Duca, L. Lupsa, On the $E$-epigraph of an $E$-convex functions, J. Optim. Theory Appl., 129 (2006), 341–348. http://dx.doi.org/10.1007/s10957-006-9059-y doi: 10.1007/s10957-006-9059-y
    [7] J. Grace, P. Thangavelu, Properties of $E$-convex sets, Tamsui Oxford Journal of Mathematical Sciences, 25 (2009), 1–7.
    [8] C. Fulga, V. Preda, Nonlinear programming with $E$-preinvex and local $E$-preinvex functions, Eur. J. Oper. Res., 192 (2009), 737–743. http://dx.doi.org/10.1016/j.ejor.2007.11.056 doi: 10.1016/j.ejor.2007.11.056
    [9] Y. Syau, L. Jia, E. Stanley-Lee, Generalizations of $E$-convex and $B$-vex functions, Comput. Math. Appl., 58 (2009), 711–716. http://dx.doi.org/10.1016/j.camwa.2009.04.012 doi: 10.1016/j.camwa.2009.04.012
    [10] Y. Syau, E. Stanley-Lee, Semi-$E$-preinvex functions, International Journal of Artificial Life Research, 1 (2010), 31–39. http://dx.doi.org/10.4018/jalr.2010070103 doi: 10.4018/jalr.2010070103
    [11] S. Mishra, R. Mohapatra, E. Youness, Some properties of semi $E$-$B$-vex functions, Appl. Math. Comput., 217 (2011), 5525–5530. http://dx.doi.org/10.1016/j.amc.2010.12.024 doi: 10.1016/j.amc.2010.12.024
    [12] J. Li, J. Lv, X. Chen, On quasi-$(E, F)$-convex functions and quasi-$(E, F)$-convex programming, Int. J. Pure Appl. Math., 70 (2011), 963–973.
    [13] Z. Luo, J. Jian, Some properties of semi-$E$-preinvex maps in Banach spaces, Nonlinear Anal.-Real, 12 (2011), 1243–1249. http://dx.doi.org/10.1016/j.nonrwa.2010.09.019 doi: 10.1016/j.nonrwa.2010.09.019
    [14] A. Iqbal, I. Ahmad, S. Ali, Some properties of geodesic semi-$E$-convex functions, Nonlinear Anal.-Theor, 74 (2011), 6805–6813. http://dx.doi.org/10.1016/j.na.2011.07.005 doi: 10.1016/j.na.2011.07.005
    [15] F. Mirzapour, On semi-$E$-convex and quasi-semi-$E$-convex functions, Hacet. J. Math. Stat., 41 (2012), 841–845.
    [16] A. Megahed, H. Gomma, E. Youness, A. El-Banna, A study on the duality of $E$-convex nonlinear programming problem, Int. Journal of Math. Analysis, 7 (2013), 175–185. http://dx.doi.org/10.12988/ijma.2013.13015 doi: 10.12988/ijma.2013.13015
    [17] A. Megahed, H. Gomma, E. Youness, A. El-Banna, Optimality conditions of $E$-convex programming for an $E$-differentiable function, J. Inequal. Appl., 2013 (2013), 246. http://dx.doi.org/10.1186/1029-242X-2013-246 doi: 10.1186/1029-242X-2013-246
    [18] A. Megahed, Second order $(F, \alpha, \rho, d, E)$-convex function and the duality problem, Journal of the Egyptian Mathematical Society, 22 (2014), 23–27. http://dx.doi.org/10.1016/j.joems.2013.06.002 doi: 10.1016/j.joems.2013.06.002
    [19] S. Majeed, M. Al-Majeed, On convex functions, $E$-convex functions and their generalizations: applications to non-linear optimization problems, Int. J. Pure Appl. Math., 116 (2017), 655–673. http://dx.doi.org/10.12732/ijpam.v116i3.11 doi: 10.12732/ijpam.v116i3.11
    [20] A. Enad, S. Majeed, Strongly $(E, F)$-convexity with applications to optimization problems, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11 (2019), 66–75.
    [21] M. Awan, M. Noor, T. Du, K. Noor, On $\mathscr{M}$-convex functions, AIMS Mathematics, 5 (2020), 2376–2387. http://dx.doi.org/10.3934/math.2020157 doi: 10.3934/math.2020157
    [22] T. Antczak, N. Abdulaleem, Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function, J. Ind. Manag. Optim., 16 (2020), 2971–2989. http://dx.doi.org/10.3934/jimo.2019089 doi: 10.3934/jimo.2019089
    [23] N. Abdulaleem, Mixed $E$-duality for $E$-differentiable vector optimization problems under (generalized) $V$-$E$-invexity, SN Oper. Res. Forum, 2 (2021), 32. http://dx.doi.org/10.1007/s43069-021-00074-z doi: 10.1007/s43069-021-00074-z
    [24] S. Majeed, A. Enad, On semi strongly $(E, F)$-convex functions and semi strongly $(E, F)$-convex optimization problems, J. Phys.: Conf. Ser., 1879 (2021), 022110. http://dx.doi.org/10.1088/1742-6596/1879/2/022110 doi: 10.1088/1742-6596/1879/2/022110
    [25] T. Emam, Nonsmooth semi-infinite $E$-convex multi-objective programming with support functions, J. Inform. Optim. Sci., 42 (2021), 193–209. http://dx.doi.org/10.1080/02522667.2020.1748277 doi: 10.1080/02522667.2020.1748277
    [26] S. Nanda, On generalization of $E$-convex and composite functions, J. Inform. Optim. Sci., 42 (2021), 1271–1282. http://dx.doi.org/10.1080/02522667.2020.1868660 doi: 10.1080/02522667.2020.1868660
    [27] D. Duca, I. Stancu-Minasian, Mathematical programming in complex space: a comprehensive bibliography, L'Analyse Numérique etla Théorie de l'Approximation, 17 (1988), 133–140.
    [28] I. Stancu-Minasian, D. Duca, T. Nishida, Multipleobjective linear fractional optimization in complex space, Math. Japonica, 35 (1990), 195–203.
    [29] E. Youness, M. Elbrolosy, Extension to necessary optimality conditions in complex programming, Appl. Math. Comput., 154 (2004), 229–237. http://dx.doi.org/10.1016/S0096-3003(03)00706-9 doi: 10.1016/S0096-3003(03)00706-9
    [30] E. Youness, M. Elbrolosy, Extension to sufficient optimality conditions in complex programming, J. Math. Stat., 1 (2005), 40–48. http://dx.doi.org/10.3844/jmssp.2005.40.48 doi: 10.3844/jmssp.2005.40.48
    [31] D. Duca, Multicriteria optimization in complex space, Cluj-Napoca: Casa Cărţii de Ştiinţă, 2005.
    [32] M. Elbrolosy, Efficiency for a generalized form of vector optimization problems in complex space, Optimization, 65 (2016), 1245–1257. http://dx.doi.org/10.1080/02331934.2015.1104680 doi: 10.1080/02331934.2015.1104680
    [33] E. Youness, M. Elbrolosy, Extension of proper efficiency in complex space, Math. Method. Appl. Sci., 41 (2018), 5792–5800. http://dx.doi.org/10.1002/mma.4715 doi: 10.1002/mma.4715
    [34] M. Elbrolosy, Criteria of saddle points for the general form of vector optimization problem in complex space, Filomat, 34 (2020), 221–230. http://dx.doi.org/10.2298/FIL2001221E doi: 10.2298/FIL2001221E
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1261) PDF downloads(60) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog