In the present paper, we prove common fixed point without continuity by using triangular property on fuzzy $ b $-metric space. Our results generalize and expand some of the literature's well-known results. We also explore some of the application of our key results to Fredholm integral equation.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Choonkil Park. On solution of Fredholm integral equations via fuzzy $ b $-metric spaces using triangular property[J]. AIMS Mathematics, 2022, 7(6): 11102-11118. doi: 10.3934/math.2022620
In the present paper, we prove common fixed point without continuity by using triangular property on fuzzy $ b $-metric space. Our results generalize and expand some of the literature's well-known results. We also explore some of the application of our key results to Fredholm integral equation.
[1] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. |
[2] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. |
[3] | I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 336–334. |
[4] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[5] | V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9 |
[6] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[7] | S. Sedghi, N. Shobe, Common fixed point theorem in $b$-fuzzy metric space, Nonlinear Funct. Anal. Appl., 17 (2012), 349–359. |
[8] | M. Abbas, F. Lael, N. Saleem, Fuzzy $b$-metric spaces: Fixed point results for $\psi$-contraction correspondences and their application, Axioms, 9 (2020), 36. https://doi.org/10.3390/axioms9020036 doi: 10.3390/axioms9020036 |
[9] | I. Shamas, S. U. Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application to fredholm integral equations, J. Funct. Spaces, 2021 (2021), 4429173. https://doi.org/10.1155/2021/4429173 doi: 10.1155/2021/4429173 |
[10] | H. Huang, Y. M. Singh, M. S. Khan, S. Radenovi$\acute{c}$, Rational type contractions in extended $b$-metric spaces, Symmetry, 13 (2021), 614. https://doi.org/10.3390/sym13040614 doi: 10.3390/sym13040614 |
[11] | I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. D. L. Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Math., 5 (2020), 6404–6418. https://doi.org/10.3934/math.2020412 doi: 10.3934/math.2020412 |
[12] | A. A. Mughal, D. Afzal, T. Abdeljawad, A. Mukheimer, I. A. Baloch, Refined estimates and generalization of some recent results with applications, AIMS Math., 5 (2021), 10728–10741. https://doi.org/10.3934/math.2021623 doi: 10.3934/math.2021623 |