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1. Introduction

Optimization theory can be regarded as an intersection of physics, machine learning, and
mathematics. This theory is used for practical problems in decision theory, data classification,
economics, production inventory, and game theory. As data used in practical models is often derived
by measurement, then the errors occur (see Kim and Kim [13]). Sometimes, the appearance of such
errors can involve some computational outcomes contradicting the actual model. In this regard, the
use of fuzzy numbers, interval analysis, and the robust approach to formulate data (and thus build
uncertain optimization models, that is optimization models governed by uncertain data) are, in recent
years, some popular research directions (see, for example, Antczak [1]).

By a fractional extremization model, we understand to optimize the ratio for two objective/cost
functionals. In this direction, Dinkelbach [5], followed by Jagannathan [7], established a parametric
approach to investigate a fractional extremization model by transforming it into a nonfractional new
extremization model. During the time, various scholars and researchers have studied this approach
to solve different fractional optimization models. We highlight the papers of Antczak and Pitea [2],
Mititelu and Treantd [18], and Mititelu [17]. The gH-derivative of symmetric type, accompanied by
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several applications in interval minimization models, have been proposed by Guo et al. [6]. For other
ideas on this topic, we can consult the papers of Patel [20], Manesh et al. [15], and Nahak [19].

As mentioned above, uncertain extremization models appear when we have old sources, inadequate
information, sample disparity, or a large volume of data (see Kim and Kim [12]). In these cases, a
robust approach has a fundamental role in analyzing the optimization model involving uncertain data.
It reduces the uncertainty of the original problem (see Kim and Kim [11]). Over the years, many
uncertain optimization models have been considered by various researchers trying to establish new and
important results (see, for instance, Treantd [27], Preeti et al. [8], and Jayswal et al. [9]). In this regard,
Lu et al. [14] established a stability analysis of nonlinear uncertain fractional differential equations
with Caputo derivative. Beck and Tal [4] investigated duality in some robust extremization models
and stated that the primal worst is equal to the dual best. Baranwal et al. [3] considered a robust-type
duality in uncertain multi-time controlled minimization models. Jeyakumar et al. [10] studied robust
duality for programming problems with generalized convexity under data uncertainty. Sun et al. [26]
analyzed approximate solutions and saddle point theorems for robust convex optimization. Wu [29]
formulated a duality theory for optimization problems with interval-valued objective functions. Also,
Zhang et al. [30] stated the optimality conditions of KKT-type (Karush-Kuhn-Tucker) in a class of
extremization problems with generalized convexity and interval-valued objective function.

Inspired by all the research works mentioned above, this paper deals with a new constrained
fractional optimization model with uncertainty in the objective functional determined by multiple
integral. Concretely, by considering a parametric approach, robust necessary optimality conditions
are derived. Moreover, we prove the robust sufficient optimality criteria by using various forms of
convexity for the involved functionals. In addition, we formulate an illustrative example to validate the
theoretical results. The paper has the following principal merits: (i) Defining the robust-type optimal
solution and, also, the robust-type Kuhn-Tucker point, associated with multiple integral functionals,
by using a parametric approach; (ii) providing original and innovative demonstrations of the principal
theorems; (iii) formulating a new context generated by normed spaces of function and functionals of
multiple integral-type. This study is strongly connected with the analysis performed in Saeed and
Treanta [21], where the cost functionals are given by path-independent curvilinear-type integrals, and
the concavity assumptions are not considered. Also, Saeed [22] considered robust-type optimality
criteria for fractional extremization models determined by path-independent curvilinear-type integrals
(and not multiple integral functional as in this study), but without monotonic and/or quasi-convexity
assumptions as in the present paper. For connected viewpoints, see Minh and Phuong [16] and Su
et al. [24,25].

In the following, in Section 2, we give basic concepts and necessary preliminaries to state the main
derived theorems. More precisely, we formulate the multidimensional fractional optimization model
with uncertainty in the objective functional, the corresponding extremization nonfractional model, and
the associated robust-type counterparts. Next, in Section 3, under suitable forms of convexity, we
establish robust-type optimality criteria of the problem under study. Also, we introduce the concept of
robust-type Kuhn-Tucker point to the considered uncertain extremization problem. Section 4 presents
an example to support the derived theoretical results. In Section 5, we provide the conclusions of the
current study.
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2. Preliminaries

In this paper, we consider A = (A7), & = 1.m, u= u), ¢ = 1,n, and y=0/), j= m as arbitrary
points of R™, R" and R/, respectively. Let A = Ay,1, € R™ be a compact set containing the points
Ao = (4p) and 4; = (1)), m = 1,m, and let dA = dA' - - - d2™ be the volume element in R”. Define the
function spaces

A= {u : A R"| u = piecewise smooth state function},

B = {y : A R/| y = piecewise continuous control function},

having the norm generated by

((.y), (b,2)) = f |1 - bV +y() - 2(2)|dA

A

l
_ f [ D w @b + Y YOIW]dA, (), (b,2) € AXB.
A =

=1

Ou . : . : o .
For u,(1) = %(/l), we introduce the following constrained fractional extremization model, with
uncertainty in objective functional,

T, u(A), (), y(A), o)dA
(Prob)  min =X ,
e f T, u(2), ur(), Y(A), w)dA
A

subject to
Mp(A, u(d), ur (1), () <0, B=1,q, 1€ A,

0
N (A, u(), ur (), y(D) == a—;(ﬁ) — Q7(4, u(A), y() = 0,

t=1,n, 7T:1,_m, AeA,

u(dy) = up = given, u(d,) = u; = given,

where o € £ C R and w € Q C R are uncertainty parameters, where X and € are convex compact sets,
and : AXA*XBXE > R, T: AXA*XBXQ - R*, Mg : AxA’xBr— R, =1,q N :
AxA X B R, 1= 1,n, n=1,m are some given C'-class functionals.

The associated robust-type counterpart of (Prob) is formulated as below

f max I'(4, u(A), ur (1), y(1), 0)dA
(RobProb) min 227

O f min (L 4, r(2), Y(1), @)dA
A wWEe

subject to

Mg, u(d), 1z (), y() <0, B=1,q, 1€ A,
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N, u(A), ur(A),y(A) =0, ¢=1,n, 7=1,m, 1€ A,

u(do) = up = given, u(1;) = u; = given,

where I, T, M = (Mp) and N = (N;,) are the same as in (Prob).
The feasible solution set for (RobProb) and (Prob) can be written as follows:

K ={(u,y) € AX B| Mpg(A, u(d), uz(1), y(1)) <0, N (A, u(d), ur(1),y(1)) =0,
u(dy) = up = given, u(d,) = u; = given, A € A}.
Let us consider, for (u,y) € K, that ' > 0, T > 0, and introduce the positive scalar (see

Jagannathan [7], Dinkelbach [5], Mititelu and Treanta [18]),

f max I'(1, u(), uz(1), y(1), o)dA f max T'(2, u’(1), u2(1), y° (1), o)dA
0 . A UEX _Ja g

D [ i . [ min T .. (. )i
A we A wEe

to build an extremization nonfractional model for (Prob), as

(u(-).y(-))

(NonFracProb) ~ min { f T(A, (), tr(), y(), )dd = V2, f T, u(D), (), Y(A), w)dA,
A A

subject to

Mp(A, u(d), (1), y(1) <0, B=1,q, 1€ A,
NYA, (), ur(D),y()) =0, v=1,n, 7=1,m, 1€ A,

u(dy) = up = given, u(d;) = u; = given.

The associated robust-type counterpart to (NonFracProb) is formulated as below:

(RobNonFracProb) ~ min { f max ['(2, u(A), ur(2), y(), )dA — VO f min Y(A, u(), u (1), y(1), a))d/l},
@Oy() " Jq o g wel

subject to
Mp(A, u(d), (1), y() <0, B=1,q, 1€ A,
N, u(A), ux(D), () =0, t=1,n, m=1,m, 1€ A,

u(dy) = up = given, u(d,) = u; = given.

Further, we considfr the notations: u = u(d), y = y(1), u =u(d), y =y, ot = (), y = (), { =
(A, 1), ur (D), YD), £ = (A, 1), Ur (D), 5(A)), { = (4, Q) i1x(2), (D).

Definition 2.1. A pair (u,y) € K is named a robust optimal point of (Prob) if

max F(Z, o)dA f max ['({, 0)dA
A o€EX < a oeX

min Y'(/, w)dA f min Y(¢, w)dA
wWeQ A WEQ

, Y(u,y) e K.
A
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Definition 2.2. A pair (%,y) € K is named a robust optimal point of (NonFracProb) if

max (£, 0)dA -V, f min (¢, w)dA
? A weQ

A oex
< | maxI'(£,0)dA — V‘;“’f min V' ({, w)dd, VY(u,y) € K.
a g ’ a weQ

Remark 2.1. We notice K is the feasible solution set of (NonFracProb) and for (RobNonFracProb).

Remark 2.2. The robust-type optimal points of (Prob) or (NonFracProb) are robust optimal points of
(RobProb) or (RobNonFracProb).

Next, to state the principal theorems of this paper, we formulate the definition of convex, (strictly,
monotonic) quasi-convex, and concave multiple integral functionals (Mititelu and Treanta [18]).

Definition 2.3. A multiple integral functional f I'(¢,0)dA is named convex at (u,y) € A X B if the
A
following inequality holds

[ rewain- [ ré@ars [ {u-05.¢0+0-n5Eo)0
A A A

+ f {(ur - i) Lz @)ldA, V(uy) € AXB.
A auﬂ'

Definition 2.4. The functional f I'(¢, 0)dA is named concave at (u,y) € A X B if the below inequality
A

is valid:

_ ol — or —
f T, )dA - f T, )dA < f (-1 C.7) + (=)o 0)d
A A A u dy

+ f {(ur - LG @))dA,  Y(u,y) € AXB.
A 6”71

Definition 2.5. The functional f ['({,0)dA is named quasi-convex at (#,y) € A X B if the below
A

f [(Z,0)dA < f [(Z,7)dA,
A A

inequality

implies

or
f - u) (4 )+ (- y)—(; T)}da + f {r ~ )5 - E}AA <0, V(w.y) €AXB.
A

A

Definition 2.6. The functional f ['({,0)dA is named strictly quasi-convex at (#,y) € A X B if the

A
f I'(,7)dA < f [(Z,7)dA,
A A

below inequality

implies

f {(u—u) Lem+ - y) (4 @)}da + f fa, - RN T L@ <0, Yy # @5 eAxE.
A

A
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Definition 2.7. The functional f I'(¢, 0)dA is named monotonic quasi-convex at (u,y) € A X B if the

A
f I, 7)dA = f [(Z,7)dA,
A A

below inequality

implies
_.or - _
{(u - u) g o)+ (- y)—(g Plda+ | |- lir) 5 (¢, T)|dA=0, V(uy)eAxB.
A fs
3. Robust-type necessary and sufficient optimality criteria

In this section, under various variants of convexity, we state the robust-type optimality criteria
of (Prob). In addition, according to Treantd [28], we introduce and characterize the notion of a
robust Kuhn-Tucker point to (Prob). This study is connected with Saeed [22], where the author
considered robust-type optimality criteria of some extremization fractional models determined by path-
independent curvilinear-type integrals (and not multiple integral functional as in this study), but without
monotonic and/or quasi-convexity assumptions as in the present paper.

To this aim, first, we establish an equivalence between (Prob) and (NonFracProb) (see, also, Sun
et al. [23]).

Proposition 3.1. Let (u,y) € K be a robust-type optimal point of (Prob). In this case, there exists
the positive scalar V_ , and (u,y) € K becomes a robust-type optimal point of (NonFracProb).

o,w’

In addition, for (u,y) € K as a robust-type optimal point of (NonkracProb) and V., =
max F(Z, o)dA
a €T

min Y(£, w)dA
A weQ

, then (u,y) € K is a robust-type optimal point of (Prob).

Proof. By contrast, let us assume that there exists (u, y) € K fulfilling

max (£, o)dA -V, f min (¢, w)dA < f max I'(Z, o)dA -V, f min (£, w)dA.
? A we a oeL ? a we

A oeX

oex
Now, if we take V, , = , we get

min Y(Z, w)dA
A WEQ

f max F({ o)dA
A

f mgzx F(Z, o)dAa

f max I['({, o)dA — f min Y'({, w)dA
A O€Z weQ

min ‘I’({ w)dA

ﬂwe

max F({ o)dA

< f max ['(Z, o)dA — f n'Y'(§ w)dA,
a geX we

mm Y(, w)dA
AW
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which is equivalent with

f max ['(Z, 0)dA f max ['(Z, 0)dA
a A o€eX

TeX

< ,
min Y(£, w)dA f min Y(Z, w)dA
7 weQ 7 WEQ
and this is a contradiction with (i, y) as a robust-type optimal point of (Prob).
Conversely, consider (u,y) € K is a robust-type optimal point of (NonFracProb), with

max F(Z, o)dA
V- A O€X

ow

min Y(Z, w)dA
a we)

and assume that (i, y) € K is not a robust-type optimal point of (Prob), involving there exists (u,y) € K
fulfilling

f max (¢, 0)dA f max ['(Z, o)dA
a o€eX A oex

< ,
min (¢, w)dA f min Y(Z, w)dA
A WEeQ A WEQ

or, in an equivalent manner,

f max ['({,o)dA — V‘;‘”f min T({, w)dA < 0,
7 O€X ? A weQ

or, equivalently,
max I'(£, o)dA -V, f min (¢, w)dA < f max I'(, o)dA -V, f min 1(Z, w)dA,
A UEX ’ 7 WEQ A UEX ’ 7 WEQ

which is a contradiction with (u,y) € K as a robust-type optimal point of (NonFracProb). O
Next, we establish the robust-type necessary criteria for optimality of (Prob).

Theorem 3.1. If (i1,y) € K is a robust-type optimal point of (Prob) and max,.sI'({,0) = I'({, o),
Mingeq Y, w) = Y({, @), then there exist v € R and f = (Pp() € R1,g = (1(2) € R™ (piecewise
differentiable functions), satisfying

)_/I:FM(Z’ 0_-) - V;,wTu(Z’ (I))] + f—TMu(E) + gTNu(Z)
0

=~ [T @) = Vo Y @ )] + T M, + 3TN, D) = 0, 3.1
YW, 5) = Vi, TZ @) | + FT M) + 8Ny = 0, (32)
ffM@)=0,p320,8=1,q, (3.3)

>0, (3.4)

for A € A, except at discontinuities.
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Proof. We define i(1) + £,h(1) and y(1) + &,m(A) as some variations for (1) and y(1), respectively,
where €1, &, are the variational parameters, and 4, m are some smooth functions with limit constraints
(see below). Therefore, we obtain the functions depending on (&, &;), defined as

Eler, ) = f [F(/l, () + £1h(), it (1) + €1h,(D)Y(A) + eom(A), F)
—ﬂV;’wT(/l, u(A) + €1h(A), i, (A) + €1h (1), Y1) + £2m(A), G))]d/l
(e, &) = fﬂ M, u() + £1h(), it (1) + €1h,(D)F(A) + e.m(Q))dA,
and
T, &) = L N(A, u(A) + £1h(Q), iz (1) + £1h (DY) + eam(A))dA.

Since, by hypothesis, the pair (i, y) is a robust-type optimal point of (Prob), therefore, the pair (0, 0) is
an optimal solution of

min &(gy, &),
1,82

subject to

Z(e1,8) 20, J(e1,6)=0
h(2o) = h(2;) = m(dp) = m(1;) =0
Thus, there exist ¥ € R, f = (fz(1)) € R%, g = (8.(1)) € R™, fulfilling
VE(0,0) + f'fvz(o, 0)+5'VJ(0,0) =0, (%)
f1Z0,00=0, f20,
7 >0,

(see Vo(x1, x,) as the gradient of ¢ at (x1, x,)). The first relation fomulated in (*) is rewritten as

f[ (8F 1% a‘r)hL (ar —V; aT)h;,+f'fa—Mh‘+f oM -TaNh ‘Ta—Nh‘]d/l 0,

ont T Ot (?Lt‘ 0—"”(9&;, on ot 4 ot o,
or oY ON .
— - V2 r0 ™Z_mi|lda=0,
L[V(ayf g™+ f ayfm e awm]

or, as follows,

(T 0NN 9 O Yy OM 9 M 0N 60N
Ty Oy Ly - HdA =

f "5z ~ Veugm) amrv(aa;, V"’waa;)ﬁ o "o aw TE aw ~and Ou;] 0
o 9T\ L0M . ON|

f[(c?yf Vougi) * I 5 * 8 ﬁ]mdﬁ_o’

where we used the divergence formula, boundary conditions, and the method of integration by parts.
In the following, by using a fundamental lemma, we get

(ar _a'r) a_(ar _ A\ OM 9 L 0M N 9 0N

oy ony v 90y, oM gIN_ 0 0N o T,
it TW At a/lﬂv aﬁ;r O—’waﬁ;) f ont a/l”f aljt;r g oitt a/lﬂg 81’4; ‘ "
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_((')F V- oY

oM ;0N
0y’ “ oy

~
)+7 oy & Gy

I
L
~.
I
—_
~

or
T, 0) = Vy o YulZ, @)| + F7 M) + 3 Nu)
0 - - _ _
[T @0) = Vo T o) + [T M, Q) + 3N, D) = 0.
YT(E,6) = Vi, 1 @) + T M) + 8" Ny(Q) = 0.

The second expression given in (x),

fZ©0,00=0, f20,

v >0,
involves
f"M@)=0, f20,
v>0,
and we complete the proof. m|

Remark 3.1. The conditions (3.1)—(3.4) are named robust-type necessary optimality criteria of (Prob).
Definition 3.1. The pair (i1, ¥) € K is named a normal robust-type optimal point of (Prob) if v > 0.

Next, on the line of Treanta [28], we introduce and describe the robust-type Kuhn-Tucker point of
(Prob).

Definition 3.2. Let max, .y ['({,0) = I'({, &), min,cq T({, w) = T({, ). The robust feasible solution
(i1, ¥) is named a robust Kuhn-Tucker point of (Prob) if there exist the piecewise differentiable functions
f=@s(0) € RL, g = (2(2)) € R™, satisfying

a {Fun (Z’ 0__)

FM(Z’ 6_) - V;,wTu(Z’ (D) + f_TMu(Z) + gTNu(Z) - N

=V Y&, @) + [T M, () + 8N, (D)) = 0,
[y, 0) = Vo, 36, @) + [T M0 + 3 Ny(@) = 0,
fiM@=0,p20. =174,

for 1 € A, except at discontinuities.

Theorem 3.2. If (i1,y) € K is a normal robust-type optimal point of (Prob), with max,cz I'({,0) =
I'(Z, ), mingeq Y({, w) = T(, @), then (i,y) € K is a robust-type Kuhn-Tucker point for (Prob).

Proof. For max,cs ['({,0) = ['({,0), ming,q V({,w) = T({, ), since (i1,y) € K is a robust-type
optimal point of (Prob) (see Theorem 3.1), there exist ¥ € R and f = (Pp() € R, g = (1.(2)) € R™,
satisfying

YW, ) = Vi Yl )| + F M) + 8" NuD)
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0 - _ _ _
YT v rur{({’ 0_-) - V;,wtrun(g’ (D) + fTMun(g) + gTNu,r(g) = O»
oA
‘_’[Fy(f ,0) =V, 1, 6))] + fT M) + 8" N0 =0,
ffM@Q) =0, ps>0,B8=1,4,7>0,

for 1 € A, except at discontinuities. Since the pair (i1,y) € K is considered a normal robust-type
optimal point, we define v = 1 > 0. O

A first result regarding the robust-type sufficient criteria of (Prob) is formulated below.

Theorem 3.3. If max, s ['({,0) = I'({,0), mingcq T({,w) = Y({,w), the relations (3.1)—(3.4) are

satisfied, the functionals f vI'(£, 0)dA, f fTM(g)d/l, and f ETN(g)d/l are convex at (u,y) € K,

A A A

and f VY(L, w)dA is concave at (u,y) € K, then (u,y) € K is a robust-type optimal point of (Prob).
A

Proof. By contrary (see also Proposition 3.1), there exists (i, y) € K fulfilling

max (£, o)dA -V, f min Y'(, w)dA < f max (£, o)dA -V, f min T'(Z, w)dA,
A oex ? A weQ A oex ? A weQ

and by taking max,.s ['({,0) = I'({, o) and min,cq T({, w) = (£, w), we obtain

f I, o)dA-V,,, f T(, w)dA < f I, o)dA-V,,, f T(Z, w)dA. (3.5)
A A A A

7T, T)dA and f VL, @)dA, it

By considering the hypotheses imposed to the functionals f
A

A
follows that

f (L, o)A ~ f O, o)dA > f {u- LT+ (-G, o)}da
A A A Ou dy
+ L f(ur - ﬁ,,)vg—;(z, @)}da, (3.6)
and
f VY (L, @)dA - f VY, w)dA < f fu- ﬁ)va—T(Z, )+ (- y)v@(z, @)}dA
A A A Ou dy
+ f f, - ﬁ,,)va—T(Z, @)}da. (3.7)
A 8”71
By multiplying (3.7) with V , and subtracting it from (3.6), we get
f VI, T)dA -V, f VY, w)dA — f VI, T)dA+V,, f VY, @)}dA
A A A A
> f (u— ﬁ)va—r(Z, o)da-Vv;, f (u— ﬁ)va—T(Z, w)dA
A ou “ Ja ou
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_or — _ _ oY - _
A dy A Oy
+ f (i —ﬁ,,)va—r(z, o)da-V;, f (U, —ﬁ,,)va—T(Z, w)dA,
A 6u,, ’ A aun
and, by (3.5), it follows that
f (u— ﬁ)va—r(z, T)dA-V; f (u— ﬁ)va—T(Z, w)dA
A Ou ’ A ou
or — oY —
v f 0=V, f 0= C @
f (uy — u,,)v—(g F)dr-V; f (1, — ﬁ”)va—T(Z, w)dA < 0. (3.8)
A auﬂ

Also, since the functionals f ?TM(g“ )d A and f §TN ({)dA are convex at (u,y) € K, we obtain
A A

_ — _ —10M — —TOM —
f (F' M@ -7 MD)da = f w-0f S-Dda+ f o -DF G- Dda
A A u A ay

+f( _ —TOM -
A tr Ouy

[ Fvo-gvoja

A

+ f (un—ﬁﬂ)gTa—N@dﬂ.
A auﬂ

and

ON - ON —
(=" = ()dA + f 0= 9&' Z-(Dd
u A y

By employing the feasibility property of (&, y) in (Prob) and relations (3.1)—(3.4), it results in

—-T0M — —T70M —
f -TF A+ f o-97 X Gar+ f (uy (3.9)
A u A dy A

and
ON - ON - ON —
[w-wg'S@ars [o-98 S @ars [(w-mg S @arso.  (10)
A u A y A Oty
On adding (3.8), (3.9), and (3.10), we get
f (u— ﬁ)va—r(z, o)dA-V;, f (u— ﬁ)va—T(Z, w)dA + f (v - y)va—r(z, o)dA
7 ou “ Ja ou 7 ay
Voo f 0= TV By + f (s~ TP, )L - Vs, f (1~ TP 2L . B)dA
Ja dy A Oty T Ja Oty

—T0M — —TOM —
¥ f w-mf Z-Qda+ f G- - @da+ f (ur — 7t
2 Ou A dy A

ON - ON - ON —
. f (e~ WF T D + f 6 -8 N @ar+ f wr —7ig" N @dr <o. 3.11)
A u A dy A Oy,
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Further, after multiplying (3.1) and (3.2) with (¥ — u) and (y — y), respectively, integrating them, and
adding the results, we obtain

[w-wv5@mar-ve, [(w-wvs o+ [ o-9v5 Eoa
A ou “Ja ou 7 ay

Vs, f 4= C D)+ f (s - TV G VAV, f s - )7L Z D)
T Ja oy A Ou, T Ja Ouy

—-TOM - —TOM - 1M —

" f w-Bf S Dd+ f (v =NF == @dA + f (U~ T)] =—(@)dA

A u A dy A Oty

ON - ON —

v f - WF S D + f 6 -7 2 @da

A u A ay
v f (tr — T 2N @) = 0,

A (9u,r

which contradicts (3.11). The proof is complete. O

Next, a second result is established on the robust-type sufficiency criteria of the considered
extremization model, under only convexity hypotheses of the involved functionals.

Theorem 3.4. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, s I'({,0) = I'({,0), mingeq V({, w) =
T, w), and
f Y@, 0) =V, T @)]da, f
A

A

FM©OdA, f FN@)dA

A
are convex at (i1, y) € K, then (u,y) is a robust-type optimal point of (Prob).

Proof. By contrast, let us suppose that (iz, ) is not a robust-type optimal point of (Prob). Thus, there
exists (i1, §) € K with the property (see Proposition 3.1),

f max (2, o)dA -V, f min Y(Z, w)dA < f max [(£,0)dA -V, f min Y (, w)dA.
A oeX ’ A we A oeX ? A we

By considering max,y I'({,0) = I'({, 0), min,eq T({, w) = (L, w), we get
f ¢, a)da—- Voo f Y, @)dA < f I, 5)dA - Voo f Y, w)dA. (3.12)
A A A A
Since (i, y) fulfills (3.1)—(3.4), we get

f (@ = WITUL, ) = Vy, Yl @] + T M) + 8N
A

0
o

+ f G = NITAL 0) =V, , T )] + fT M) + 3T Ny(D))da
A

9T, (. 0) = Vi, Y& )] + FT M, (D) + 37N, (D)])dA

= [ |- 00Ir @0 - Ve TG0 + 7 MU + NN
A
+ (ﬁﬂ - ﬁn){‘_j[ruﬂ(z’ O_-) - V;,wTuﬂ(Z, (I))] + f—rMu,,(Z) + gTNu,r(Z)}]d/l
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+ f@ ~ I, 0) = Vi, V(G )l + fT M) + 8 Ny(DYdA = 0, (3.13)
A

by using the divergence formula, the boundary conditions, and the method of integration by parts.

Also, since [F({ ,0) = V., T, a))]d/l is convex at (i1, y), we get

. %
[ pIr@.o - vo, 1@ o -5ir@.o) - Vo, 1@ o
> [ =PI = Vo @@+ [ (=090, €)= Vi Yl
+ L G =L, 0) = V., Ui (¢, @))dA,
and, by (3.12), it results in
L (- T, &) = Vi Tl )l + L (i — BT, G, ) = Vi T @ D)1

. f (5 = T ) — Vi, (& @)dA < 0. (3.14)
A

Now, by convexity property of f FTM(0)dA at (i, 7), we obtain
A

L {(FTM@) - F" M©)}da > fﬂ @ — &) [T M(OdA + L (@ = i) fT M (D)dA + L G =N MDA,
which by robust feasibility of (i, ) for (Prob) and (3.3) gives
[[@=rm@air+ [ o-mf MuDirs [ G-pimdarse. 619
Further, in the same manner, we obtain
[ @-ng N+ fﬂ (i — 13" N, (D)1 + L G- NDdL<0.  (3.16)
Finally, by adding (3.14), (3.15), and (3.16), it follows that
[ [ D0E.0) = Vo Y@ 0+ T MAD + 5 NG
+ (g = BT, ) = Vi T G D) + M, (D) + 87N (D)}]dA
- [ 6-P0I0E0) Vo L@@+ MO+ F NN <0,

which contradicts (3.13). O

Next, under only (strictly, monotonic) quasi-convexity assumptions, new robust-type sufficient
optimality criteria are stated.
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Theorem 3.5. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, s I'({,0) = I'({,0), mingeq Y ({, w) =
T(,w), and

Flu,y; 7, @) := f 7T, &) = Vo, Y& @)]da, Y(u,y) = f FTM(0)dA
A A

are quasi-convex and strictly quasi-convex at (it,y) € K, respectively, and X(u,y) := f . g'N()dA is

monotonic quasi-convex at (i1, y) € K, then (i1, y) is a robust-type optimal point of (Prob).

Proof. Consider (i1, ¥) is not a robust-type optimal point of (Prob), and define the set (nonempty)
={(u,y) € K| Fu,y;0,0) < F(a,y;0, ), X(u,y) = X(@,3), Y(u,y) < Y(@,y)}.

By hypothesis, for (u,y) € S, we get

v, @) < F(

:|

.30, @)

~ Voo Tl @) | = 1) + 9|0, &) = Vi, 1 @) | = v

s‘h

+ L {v[ruﬂ(g, 7) = Vi Y, (. @) |(tr — i)}l < 0. (3.17)
For (u,y) € S, the equality X(u, y) = X(&, ¥) holds and it follows
fﬂ (&N =) + " ND =~ D)y + fﬂ (8" Nu (D)1t — 1)}y = 0. (3.18)
Also, for (u,y) € S, the inequality Y(u, y) < Y (i, y) gives
L (7" MO =) + FT MUy - 5)}dv + fﬂ {77 M, (D)ux — i) }dv < 0. (3.19)
Since(it, y) fulfills (3.1)—(3.4), we get

f(u ~ WL, T) = Vo, Yuld, )] + FTMAD + &N

T [v[r &, 3) =V, T @@ + FT M, (D) + 8N, (D) |1dA
+ fﬂ O = DINE, ) =V, , 1 D) + FT M) + 8T N())dA
= L | = DEITUAL, &) = Vil D] + T MUD + B NUD)
+ (g = BT, (G, 0) = Vi Vi G D) + T M () + 87N (D} ]dA
+ L O = NI, &) = V, 1 @)] + FT M) + 8" Ny(D)da = 0, (3.20)

by using the divergence formula, the boundary conditions, and the method of integration by parts.
Now, by adding (3.17), (3.18), and (3.19), we obtain

[ - 00ir@.o) - Ve ru@.on + 7M@) + M)
A
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+ (e = BVIC, (L, T) = Vi, L ) + fT M, (D) + 8N, (€ )}]d/l

+ f 5 = PG - Vo, Ty C )] + T MUD + 5 N,D)dA < 0,
A

which contradicts (3.20). O

Various consequences associated with the abovementioned result are written as follows.
Theorem 3.6. If (i1, V) € K and (3.1)—(3.4) are satisfied, max,cz I'({,0) = ['({,0), mingeq V({, w) =
T(,w), and
F(u,y; &, ®) := f 7. &) = Vi, Y& @)]da, Y(u,y) = f FTMda
A A
are strictly quasi-convex and quasi-convex at (i1,y) € K, respectively, and X(u,y) := f . g'N(0)dA is
monotonic quasi-convex at (i, y) € K, then (i1, y) is a robust-type optimal point of (Prob).

Proof. In the proof of Theorem 3.5, we replace “<” in (3.17) with “<”, and “<” in (3.19) with “<”. O

Theorem 3.7. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, ez I'({,0) = I'({,0), mingeq V({, w) =
T(,w), and

Fu,y, 0, ) = f 7 TC O 0) - T )0, @)|da, Y(u,y) = f FTM@)da
A A

are quasi-convex and strictly quasi-convex at (i1,y) € K, respectively, and X(u,y) := f . g'N()dA is
monotonic quasi-convex at (i1, y) € K, then (i1, y) is a robust-type optimal point of (Prob).

f max I'(Z,0)dA B7 o
Proof. In the proof of Theorem 3.5, we replace V , = A T = N(é’ Cf) . i

min T, w)dd - TZ,5)

A

Theorem 3.8. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, s I'({,0) = I'({,0), mingeq Y ({, w) =
T, w), and

Fuy0.0) = [ TEONEo -TEoTC ol Yuy = [ Fuod
A A

are strictly quasi-convex and quasi-convex at (i1, V) € K, respectively, and X(u,y) := f 2 g'N(0)dA is
monotonic quasi-convex at (i1, y) € K, then (i1,y) is a robust-type optimal point of (Prob).

max F(Z, o)dA

Proof. In the proof of Theorem 3.5, we replace V., = A 7 — = I:(é‘:’ 6_-) , “<”1n (3.17)
min T(, w)dA 1. o)
A WeQ
with “<”, and “<” in (3.19) with “<”. O
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Theorem 3.9. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, s I'({,0) = I'({,0), mingeq Y ({, w) =
T(,w), and

Fuyo.0) = [ e -vo reolin
A

Py = [ 7M@) + @Vl
A

are quasi-convex and strictly quasi-convex at (i1,y) € K, respectively, then (i,y) is a robust-type
optimal point of (Prob).
Proof. In the proof of Theorem 3.5, we consider “<” in (3.18) and (3.19), then we add them. O

Theorem 3.10. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, ez I'({,0) = I['({,0), min,eq Y({, w) =
T(,w), and

Fuyo.0)= [ o -vo reolin
A

Py = [ 7M@)+ @ Nl
A
are strictly quasi-convex and quasi-convex at (ii,y) € K, respectively, then (i1,y) is a robust-type
optimal point of (Prob).

Proof. In the proof of Theorem 3.5, we consider “<” in (3.17), and “<” in (3.18) and (3.19), then we
add them. O

Theorem 3.11. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, ez I'({,0) = I['({,0), mingeq Y({, w) =
T(,w), and

Fu,y;0,@) := L Y| TE O, 0) - T, )1, @)]da,

Py = [ 7M@) + @V
A

are quasi-convex and strictly quasi-convex at (i1,y) € K, respectively, then (i,y) is a robust-type
optimal point of (Prob).

max ['({, o)dA - —

Proof. In the proof of Theorem 3.5, we replace V, , = A T — = {‘(é’ 0__-) , and consider
min T, w)dd 1, o)
A WE.
“<”1n (3.18) and (3.19), then we add them. O

Theorem 3.12. If (i1, V) € K and (3.1)—(3.4) are satisfied, max, s I'({,0) = I'({,0), mingeq Y({, w) =
T, w), and

Fuyio.0) = [ A|TEore.o -TEomeai
A

Y(u,y) = L |7 M@ + " N@)|da

are strictly quasi-convex and quasi-convex at (i1,y) € K, respectively, then (ii,y) is a robust-type
optimal point of (Prob).
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f max F(Z, o)dA
A .

oex

Proof. In the proof of Theorem 3.5, we replace V, , = = 1:((5 0__-)), “<”in (3.17)

mig Y, w)dA ¢, o
A wE
with “<”, and consider “<” in (3.18) and (3.19), then we add them.

4. Application

The following application presents the practical aspect of the theoretical developments given in
the previous sections. In this regard, we consider we have interest only in affine control and state
functions, ¥ = Q = [1,2], and A C R? is a square having the corners 1, = (/11,/13) = (0,0) and

A = (3, 2%) = (1, 1) € R%. We consider the following extremization fractional model:

2°2
f I, 0)dA dA* f [y* + oldA'dA?
Frtouter™ oo

(Probl) min
f T, w)dA d22 f [wue+31dA d 22
A A

(u(-).y()

subject to

M) =u*+u-2<0,

ou
N()=—+2y-1=0, n=1,2,
) Y n
11 1
M(E,E)—g, M(0,0)—l

The nonfractional extremization model for (Prob1) is formulated by:

(NonFracProbl) min { f O + oldA'dA® - Vs, f [wue™21dA'd 2},
@y ' J g “ Ja

subject to
M(§)=u2+u—230,

Ny(0) = (;9; +2y-1=0, 7=1,2,

11 1
M(E’i) = g, u(0,0) =1,

and the associated robust-type counterpart of (NonFracProbl) is introduced as:
(RobNonFracProbl) min { max[y* + oldA'dA* -V, f min[wueQL’Jr%]d/lld/lz},
WO \ J g oez @ a4 we

subject to

M) =u>+u-2<0,
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P
N,,(():a—;+2y—1:0, x=1,2,

11 1
:1 - == —.
u(0,0) =1, ”(2’2) 3

The robust-type feasible solution set of (NonFracProbl) is

Ou  Ou

1, == —
FYURYE

W:{(u,y)eAxB:—ZSu< =1—2y,u(1 1)_1 M(O,O):l},

2°2) " 3

and we obtain (i, 5) = (—2(A' + 42) + 1, 2) € K, which satisfies (3.1)-(3.4) at 2! = 4> = 0, with V;,, =
3166;% , the parameters & = 2,w = 1, and v = %,f =0,g, = g, = 2. Further, it can also be easily verified
that the involved functionals [, 7|T({, &) - VY, @)|dA'da%, [, fTM()dA'dA%, [ g"N({)dA'dA?
are convex at (u,y) = (1, %) € K. As the hypotheses in Theorem 3.4 are fulfilled, we can conclude that
(u,y) is a robust-type optimal point of (NonFracProb1). Now, applying Proposition 3.1, we get (i, y)
is also a robust optimal solution to (Prob1).

5. Conclusions

In this paper, a multidimensional fractional variational control problem with data uncertainty in the
cost functional has been studied. In this regard, under the various forms of convexity for the considered
functionals, we have stated the associated robust-type optimality criteria. The main results of the paper
are validated with an appropriate illustrative example.
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