Research article

Robust strong duality for nonconvex optimization problem under data uncertainty in constraint

  • Received: 08 February 2021 Accepted: 09 August 2021 Published: 26 August 2021
  • MSC : 90C46, 90C48

  • This paper deals with the robust strong duality for nonconvex optimization problem with the data uncertainty in constraint. A new weak conjugate function which is abstract convex, is introduced and three kinds of robust dual problems are constructed to the primal optimization problem by employing this weak conjugate function: the robust augmented Lagrange dual, the robust weak Fenchel dual and the robust weak Fenchel-Lagrange dual problem. Characterizations of inequality (1.1) according to robust abstract perturbation weak conjugate duality are established by using the abstract convexity. The results are used to obtain robust strong duality between noncovex uncertain optimization problem and its robust dual problems mentioned above, the optimality conditions for this noncovex uncertain optimization problem are also investigated.

    Citation: Yanfei Chai. Robust strong duality for nonconvex optimization problem under data uncertainty in constraint[J]. AIMS Mathematics, 2021, 6(11): 12321-12338. doi: 10.3934/math.2021713

    Related Papers:

  • This paper deals with the robust strong duality for nonconvex optimization problem with the data uncertainty in constraint. A new weak conjugate function which is abstract convex, is introduced and three kinds of robust dual problems are constructed to the primal optimization problem by employing this weak conjugate function: the robust augmented Lagrange dual, the robust weak Fenchel dual and the robust weak Fenchel-Lagrange dual problem. Characterizations of inequality (1.1) according to robust abstract perturbation weak conjugate duality are established by using the abstract convexity. The results are used to obtain robust strong duality between noncovex uncertain optimization problem and its robust dual problems mentioned above, the optimality conditions for this noncovex uncertain optimization problem are also investigated.



    加载中


    [1] A. Y. Azimov, R. N. Gasimov, On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization, Int. J. Appl. Math., 1 (1999), 171-192.
    [2] E. J. Balder, An extension of duality-stability relations to nonconvex optimization problems, SIAM J. Control Optim., 15 (2006), 329-343.
    [3] A. Beck, A. Ben-Tal, Duality in robust optimization: Primal worst equals dual best, Oper. Res. Lett., 37 (2009), 1-6.
    [4] A. Ben-Tal, S. Boyd, A. Nemirovski, Extending scope of robust optimization: Comprehensive robust counterparts of uncertain problems, Math. Program., 107 (2006), 63-89.
    [5] D. Bertsimas, D. Brown, Constructing uncertainty sets for robust linear optimization, Oper. Res., 57 (2009), 1483-1495.
    [6] R. I. Boţ, V. Jeyakumar, G. Y. Li, Robust duality in parametric convex optimization, Set-Valued Var. Anal., 21 (2013), 177-189.
    [7] A. Ben-Tal, A. Nemirovski, Selected topics in robust convex optimization, Math Program. Ser. B, 112 (2008), 125-158.
    [8] D. Bertsimas, D. Pachamanova, M. Sim, Robust linear optimization under general norms, Oper. Res. Lett., 32 (2004), 510-516.
    [9] R. S. Burachik, A. Rubinov, Abstract convexity and augmented Lagrangians, SIAM J. Optim., 18 (2007), 413-436.
    [10] T. D. Chuong, Optimality and duality for robust multiobjectiv optimization problems, Nonlnear Anal., 134 (2016), 127-143.
    [11] N. Dinh, M. A. Goberna, D. H. Long, New Farkas-Type results for vector-valued functions: A non-abstract approach, J. Optim. Theory Appl., 182 (2018), 4-29.
    [12] N. Dinh, D. H. Long, Complete characterizations of robust strong duality for robust vecter optimization problems, Vietnam J. Math., 46 (2018), 293-328. doi: 10.1007/s10013-018-0283-1
    [13] N. Dinh, T. H. Mo, G. Vallet, M. Volle, A unified approach to robust Farkas-Type results with applications to robust optimization problems, SIAM J. Optim., 27 (2017), 1075-1101. doi: 10.1137/16M1067925
    [14] C. J. Goh, X. Q. Yang, Nonlinear Lagrangian theory for nonconvex optimization, J. Optim. Theory Appl., 109 (2001), 99-121. doi: 10.1023/A:1017513905271
    [15] V. Jeyakumar, G. Y. Li, Strong duality in robust convex programming: Complete characterizations, SIAM J. Optim., 20 (2010), 3384-3407. doi: 10.1137/100791841
    [16] V. Jeyakumar, G. Y. Li, G. M. Lee, Robust duality for generalized convex programming problems under data uncertainty, Nonlinear Anal. Theory Methods Appl., 75 (2012), 1362-1373. doi: 10.1016/j.na.2011.04.006
    [17] Y. Küçük, İ. Atasever, M. Küçük, Weak Fenchel and weak Fenchel-Lagrange conjugate duality for nonconvex scalar optimization problems, J. Glob. Optim., 54 (2012), 813-830. doi: 10.1007/s10898-011-9794-y
    [18] G. Y. Li, V. Jeyakumar, G. M. Lee, Robust conjugate duality for convex optimization under uncertainty with application to data classication, Nonlnear Anal., 74 (2011), 2327-2341. doi: 10.1016/j.na.2010.11.036
    [19] J. H. Lee, G. M. Lee, On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems, Ann. Oper. Res., 269 (2018), 419-438. doi: 10.1007/s10479-016-2363-5
    [20] S. K. Mishra, M. Jaiswal, L. T. H. An, Duality for nonsmooth semi-infinite programming problems, Optim. Lett., 6 (2012), 261-271. doi: 10.1007/s11590-010-0240-8
    [21] Y. Pandey, S. K. Mishra, Duality for nonsmooth optimization problems with equilibrium constraints, using convexificators, J. Optim. Theory Appl., 171 (2016), 694-707. doi: 10.1007/s10957-016-0885-2
    [22] S. Qu, H. Cai, D. Xu, N. Mohamed, Correction to: Uncertainty in the prediction and management of CO$_{2}$ emissions: A robust minimum entropy approach, Nat. Hazards, 2021.
    [23] S. J. Qu, Y. M. Li, Y. Ji, The mixed integer robust maximum expert consensus models for large-scale GDM under uncertainty circumstances, Appl. Soft. Comput., 2021.
    [24] A. M. Rubinov, Abstract convexity and global optimization, Dordrecht: Kluwer Academic, 2000.
    [25] A. M. Rubinov, R. N. Gasimov, The nonlinear and augmented Lagrangians for nonconvex optimization problems with a single constraint, Appl. Comput. Math., 1 (2002), 142-157.
    [26] R. T. Rockafellar, R. J. B. Wets, Variational analysis, Berlin: Springer, 1998.
    [27] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, V. Cevher, An inexact augmented Lagrangian framework for nonconvex optimization with nonlinear constraints, 2019. Available from: https://arXiv.org/abs/1906.11357.
    [28] X. K. Sun, Z. Y. Peng, X. L. Guo, Some characterizations of robust optimal solutions for uncertain convex optimization problems, Optim. Lett., 10 (2016), 1463-1478. doi: 10.1007/s11590-015-0946-8
    [29] X. K. Sun, K. L. Teo, X. J. Long, Characterizations of robust $\varepsilon$-quasi optimal solutions for nonsmooth optimization problems with uncertain data, Optimization, 70 (2021), 847-870. doi: 10.1080/02331934.2021.1871730
    [30] X. K. Sun, K. L. Teo, L. P. Tang, Dual approaches to characterize Robust optimal solution sets for a class of uncertain optimization problems, J. Optim. Theory Appl., 182 (2019), 984-1000. doi: 10.1007/s10957-019-01496-w
    [31] X. K. Sun, K. L. Teo, J. Zeng, L. Y. Liu, Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty, Optimization, 69 (2020), 2109-2129. doi: 10.1080/02331934.2020.1763990
    [32] X. Q. Yang, X. X Huang, A nonlinear Lagrangian approach to constrained optimization problems, SIAM J. Optim., 11 (2001), 1119-1144. doi: 10.1137/S1052623400371806
    [33] G. D. Yalcin, R. Kasimbeyli, On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization, Math. Methods Oper. Res., 92 (2020), 199-228. doi: 10.1007/s00186-020-00708-8
    [34] C. Zǎlinescu, Convex analysis in general vector spaces, World Scientific, 2002.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2065) PDF downloads(121) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog