In this paper, we investigate a class of optimal control problems for turbofan aero-engines considering external disturbances. The alternating direction method of multipliers (ADMM) is embedded in the framework of robust model predictive control (RMPC), which is not only able to reach a predetermined value of the engine fan speed, but is also developed to maintain the robustness of the engine control system. First, to consider the optimal control strategy for the worst-case scenario, this optimal control problem is formulated as a minimum-maximum convex optimization problem with constraints. Second, through a transformation technique, the problem can be equivalently described by a variational inequality, which is then transformed into a quadratic programming (QP) problem using a proximal point algorithm (PPA). Finally, the ADMM algorithm is used to solve a series of optimization subproblems based on the structural characteristics of the model. Computational examples illustrate the solution efficiency and robustness of the improved algorithm (RMPC-ADMM).
Citation: Min Wang, Jiao Teng, Lei Wang, Junmei Wu. Application of ADMM to robust model predictive control problems for the turbofan aero-engine with external disturbances[J]. AIMS Mathematics, 2022, 7(6): 10759-10777. doi: 10.3934/math.2022601
In this paper, we investigate a class of optimal control problems for turbofan aero-engines considering external disturbances. The alternating direction method of multipliers (ADMM) is embedded in the framework of robust model predictive control (RMPC), which is not only able to reach a predetermined value of the engine fan speed, but is also developed to maintain the robustness of the engine control system. First, to consider the optimal control strategy for the worst-case scenario, this optimal control problem is formulated as a minimum-maximum convex optimization problem with constraints. Second, through a transformation technique, the problem can be equivalently described by a variational inequality, which is then transformed into a quadratic programming (QP) problem using a proximal point algorithm (PPA). Finally, the ADMM algorithm is used to solve a series of optimization subproblems based on the structural characteristics of the model. Computational examples illustrate the solution efficiency and robustness of the improved algorithm (RMPC-ADMM).
[1] | S. Fan, H. Li, D. Fan, Aeroengine control (Chinese), Xi'an: Northwestern Polytechnic University Press, 2008. |
[2] | J. Csank, R. May, J. Litt, T. Guo, Control design for a generic commercial aircraft engine, Proceedings of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010, 6629. https://doi.org/10.2514/6.2010-6629 doi: 10.2514/6.2010-6629 |
[3] | X. Du, H. Richter, Y. Guo, Multivariable sliding mode strategy with output constraints for aeroengine propulsion control, J. Guid. Control Dynam., 39 (2016), 1631–1642. https://doi.org/10.2514/1.G001802 doi: 10.2514/1.G001802 |
[4] | H. Richter, Advanced control of turbofan engines, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-1171-0 |
[5] | J. Mu, D. Rees, G. Liu, Advanced controller design for aircraft gas turbine engines, Control Eng. Pract., 13 (2005), 1001–1015. https://doi.org/10.1016/j.conengprac.2004.11.001 doi: 10.1016/j.conengprac.2004.11.001 |
[6] | A. Aly, I. Atia, Neural modeling and predictive control of a small turbojet engine (sr30), Proceedings of 10th International Energy Conversion Engineering Conference, 2012, 4242. https://doi.org/10.2514/6.2012-4242 doi: 10.2514/6.2012-4242 |
[7] | X. Du, X. Sun, Z. Wang, A. Dai, A scheduling scheme of linear model predictive controllers for turbofan engines, IEEE Access, 5 (2017), 24533–24541. https://doi.org/10.1109/ACCESS.2017.2764076 doi: 10.1109/ACCESS.2017.2764076 |
[8] | J. Seok, I. Kolmanovsky, A. Girard, Coordinated model predictive control of aircraft gas turbine engine and power system, J. Guid. Control Dynam., 40 (2017), 2538–2555. https://doi.org/10.2514/1.G002562 doi: 10.2514/1.G002562 |
[9] | H. Richter, A. Singaraju, J. Litt, Multiplexed predictive control of a large commercial turbofan engine, J. Guid. Control Dynam., 31 (2008), 273–281. https://doi.org/10.2514/1.30591 doi: 10.2514/1.30591 |
[10] | J. Decastro, Rate-based model predictive control of turbofan engine clearance, J. Propul. Power, 23 (2007), 804–813. https://doi.org/10.2514/1.25846 doi: 10.2514/1.25846 |
[11] | H. Chen, Model predictive control (Chinese), Beijing: Science Press, 2013. |
[12] | Y. Li, Q. Zou, X. Ji, C. Zhang, K. Lu, Fast model predictive control based on adaptive alternating direction method of multipliers, J. Chem., 2019 (2019), 8035204. https://doi.org/10.1155/2019/8035204 doi: 10.1155/2019/8035204 |
[13] | Y. Guo, H. Gao, H. Xing, Q. Wu, Z. Lin, Decentralized coordinated voltage control for vsc-hvdc connected wind farms based on admm, IEEE T. Sustain. Energ., 10 (2019), 800–810. https://doi.org/10.1109/TSTE.2018.2848467 doi: 10.1109/TSTE.2018.2848467 |
[14] | R. Shan, Q. Li, F. He, H. Feng, T. Guan, Model predictive control based on ADMM for aero-engine (Chinese), Journal of Beijing University of Aeronautics and Astronautics, 45 (2019), 1240–1247. https://doi.org/10.13700/j.bh.1001-5965.2018.0599 doi: 10.13700/j.bh.1001-5965.2018.0599 |
[15] | J. Eckstein, Y. Wang, Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives, Pac. J. Optim., 11 (2015), 619–644. |
[16] | E. Ghadimi, A. Teixeira, I. Shames, M. Johansson, Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems, IEEE T. Automat. Contr., 60 (2015), 644–658. https://doi.org/10.1109/TAC.2014.2354892 doi: 10.1109/TAC.2014.2354892 |
[17] | J. Bai, J. Li, F. Xu, H. Zhang, Generalized symmetric ADMM for separable convex optimization, Comput. Optim. Appl., 70 (2018), 129–170. https://doi.org/10.1007/s10589-017-9971-0 doi: 10.1007/s10589-017-9971-0 |
[18] | B. He, F. Ma, X. Yuan, Optimally linearizing the alternating direction method of multipliers for convex programming, Comput. Optim. Appl., 75 (2020), 361–388. https://doi.org/10.1007/s10589-019-00152-3 doi: 10.1007/s10589-019-00152-3 |
[19] | Y. Shen, Y. Zuo, A. Yu, A partially proximal S-ADMM for separable convex optimization with linear constraints, Appl. Numer. Math., 160 (2021), 65–83. https://doi.org/10.1016/j.apnum.2020.09.016 doi: 10.1016/j.apnum.2020.09.016 |
[20] | M. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 152 (2004), 199–277. https://doi.org/10.1016/S0096-3003(03)00558-7 doi: 10.1016/S0096-3003(03)00558-7 |
[21] | M. Noor, K. Noor, M. Rassias, New trends in general variational inequalities, Acta. Appl. Math., 170 (2020), 981–1064. https://doi.org/10.1007/s10440-020-00366-2 doi: 10.1007/s10440-020-00366-2 |
[22] | B. He, Y. Shen, On the convergence rate of customized proximal point algorithm for convex optimization and saddle-point problem (Chinese), Sci. Sin. Math., 42 (2012), 515–525. https://doi.org/10.1360/012011-1049 doi: 10.1360/012011-1049 |
[23] | S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Boston: Now Publishers, 2011. https://doi.org/10.1561/2200000016 |
[24] | B. Martinet, Brève communication. Régularisation d'inéquations variationnelles par approximations successives, R. I. R. O., 4 (1970), 154–158. https://doi.org/10.1051/m2an/197004R301541 doi: 10.1051/m2an/197004R301541 |
[25] | R. Rockafellar, Monotone operators and the proximal point algorithm, SIAM. J. Control. Optim., 14 (1976), 877–898. https://doi.org/10.1137/0314056 doi: 10.1137/0314056 |
[26] | R. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), 97–196. https://doi.org/10.1287/moor.1.2.97 doi: 10.1287/moor.1.2.97 |
[27] | J. Eckstein, D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293–318. https://doi.org/10.1007/BF01581204 doi: 10.1007/BF01581204 |
[28] | B. He, X. Yuan, W. Zhang, A customized proximal point algorithm for convex minimization with linear constraints, Comput. Optim. Appl., 56 (2013), 559–572. https://doi.org/10.1007/s10589-013-9564-5 doi: 10.1007/s10589-013-9564-5 |
[29] | C. Ha, A generalization of the proximal point algorithm, SIAM. J. Control Optim., 28 (1990), 503–512. https://doi.org/10.1137/0328029 doi: 10.1137/0328029 |
[30] | X. Zhao, D. Sun, K. Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM. J. Optimiz., 20 (2010), 1737–1765. https://doi.org/10.1137/080718206 doi: 10.1137/080718206 |
[31] | G. Gu, B. He, X. Yuan, Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach, Comput. Optim. Appl., 59 (2014), 135–161. https://doi.org/10.1007/s10589-013-9616-x doi: 10.1007/s10589-013-9616-x |
[32] | J. Bai, H. Zhang, J. Li, A parameterized proximal point algorithm for separable convex optimization, Optim. Lett., 12 (2018), 1589–1608. https://doi.org/10.1007/s11590-017-1195-9 doi: 10.1007/s11590-017-1195-9 |
[33] | M. Zeilinger, D. Raimondo, A. Domahidi, M. Morari, C. Jones, On real-time robust model predictive control, Automatica, 50 (2014), 683–694. https://doi.org/10.1016/j.automatica.2013.11.019 doi: 10.1016/j.automatica.2013.11.019 |
[34] | Y. Xi, X. Geng, H. Chen, Recent advances in research on predictive control performance (Chinese), Control Theory and Applications, 17 (2000), 469–475. |
[35] | J. Wang, Z. Liu, H. Chen, S. Yu, R. Pei, $H_{\infty}$ output feedback control of constrained systems via moving horizon strategy, Acta Automatica Sinica, 33 (2007), 1176–1181. https://doi.org/10.1360/aas-007-1176 doi: 10.1360/aas-007-1176 |
[36] | D. Li, Y. Xi, Design of efficient robust model predictive controller for systems with bounded disturbances (Chinese), Control Theory and Applications, 26 (2009), 535–539. |
[37] | P. Orukpe, X. Zheng, I. Jaimoukha, A. Zolotas, R. Goodall, Model predictive control based on mixed $H_{2}$/$H_{\infty}$ control approach for active vibration control of railway vehicles, Vehicle Syst. Dyn., 46 (2008), 151–160. https://doi.org/10.1080/00423110701882371 doi: 10.1080/00423110701882371 |
[38] | H. Huang, D. Li, Y. Xi, Synthesis of robust model predictive control based on mixed $H_{2}$/$H_{\infty}$ control approach (Chinese), Kongzhi yu Juece/Control and Decision, 25 (2010), 1269–1272. |
[39] | H. Huang, D. Li, Z. Lin, Y. Xi, An improved robust model predictive control design in the presence of actuator saturation, Automatica, 47 (2011), 861–864. https://doi.org/10.1016/j.automatica.2011.01.045 doi: 10.1016/j.automatica.2011.01.045 |
[40] | Y. Lee, M. Cannon, B. Kouvartakis, Extended invariance and its use in model predictive control, Automatica, 41 (2005), 2163–2169. https://doi.org/10.1016/j.automatica.2005.07.012 doi: 10.1016/j.automatica.2005.07.012 |
[41] | S. Kanev, M. Verhaegen, Robustly asymptotically stable finite-horizon MPC, Automatica, 42 (2006), 2189–2194. https://doi.org/10.1016/j.automatica.2006.07.011 doi: 10.1016/j.automatica.2006.07.011 |
[42] | F. Wang, J. Jian, A nonmonotonic hybrid algorithm for min-max problem, Optim. Eng., 15 (2014), 909–925. https://doi.org/10.1007/s11081-013-9229-3 doi: 10.1007/s11081-013-9229-3 |
[43] | M. Kothare, V. Balakrishnan, M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, 32 (1996), 1361–1379. https://doi.org/10.1016/0005-1098(96)00063-5 doi: 10.1016/0005-1098(96)00063-5 |
[44] | D. Li, Y. Xi, P. Zheng, Constrained robust feedback model predictive control for uncertain systems with polytopic description, Int. J. Control, 82 (2009), 1267–1274. https://doi.org/10.1080/00207170802530883 doi: 10.1080/00207170802530883 |
[45] | Y. Lu. Y. Arkun, Quasi-min–max MPC algorithms for LPV systems, Automatica, 36 (2000), 527–540. https://doi.org/10.1016/S0005-1098(99)00176-4 doi: 10.1016/S0005-1098(99)00176-4 |
[46] | Z. Wan, M. Kothare, Brief an efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica, 39 (2003), 837–846. https://doi.org/10.1016/S0005-1098(02)00174-7 doi: 10.1016/S0005-1098(02)00174-7 |
[47] | Y. Lee, B. Kouvaritakis, Receding horizon output feedback control for linear systems with input saturation, IEE Proceedings, 148 (2001), 109–115. https://doi.org/10.1049/ip-cta:20010292 doi: 10.1049/ip-cta:20010292 |
[48] | D. Mayne, S. Raković, R. Findeisen, F. Allgöwer, Robust output feedback model predictive control of constrained linear systems, Automatica, 42 (2006), 1217–1222. https://doi.org/10.1016/j.automatica.2006.03.005 doi: 10.1016/j.automatica.2006.03.005 |
[49] | A. Bemporad, A. Garulli, Output-feedback predictive control of constrained linear systems via set-membership state estimation, Int. J. Control, 73 (2000), 655–665. https://doi.org/10.1080/002071700403420 doi: 10.1080/002071700403420 |
[50] | B. He, A uniform framework of contraction methods for convex optimization and monotone variational inequality (Chinese), Sci. Sin. Math., 48 (2018), 255. https://doi.org/10.1360/N012017-00034 doi: 10.1360/N012017-00034 |
[51] | B. He, M. Xu, A general framework of contraction methods for monotone variational inequalities, Pac. J. Optim., 4 (2008), 195–212. |
[52] | R. Shridhar, D. Cooper. A novel tuning strategy for multivariable model predictive control, ISA T., 36 (1997), 273–280. https://doi.org/10.1016/S0019-0578(97)00036-0 doi: 10.1016/S0019-0578(97)00036-0 |
[53] | D. Clarke, R. Scattolini, Constrained receding-horizon predictive control, IEE Proceedings D, 138 (1991), 347–354. https://doi.org/10.1049/ip-d.1991.0047 doi: 10.1049/ip-d.1991.0047 |
[54] | D. Mayne, J. Rawlings, C. Rao, P. Scokaert, Constrained model predictive control: stability and optimality, Automatica, 36 (2000), 789–814. https://doi.org/10.1016/S0005-1098(99)00214-9 doi: 10.1016/S0005-1098(99)00214-9 |