In this paper, we propose one step convex combination of proximal point algorithms for countable collection of monotone vector fields in CAT(0) spaces. We establish $ \Delta $-convergence and strong convergence theorems for approximating a common solution of a countable family of monotone vector field inclusion problems. Furthermore, we apply our methods to solve a family of minimization problems, compute Frechét mean and geometric median in CAT(0) spaces, and solve a kinematic problem in robotic motion control. Finally, we give a numerical example to show the efficiency and robustness of the proposed scheme in comparison to a known scheme in the literature.
Citation: Sani Salisu, Poom Kumam, Songpon Sriwongsa. One step proximal point schemes for monotone vector field inclusion problems[J]. AIMS Mathematics, 2022, 7(5): 7385-7402. doi: 10.3934/math.2022412
In this paper, we propose one step convex combination of proximal point algorithms for countable collection of monotone vector fields in CAT(0) spaces. We establish $ \Delta $-convergence and strong convergence theorems for approximating a common solution of a countable family of monotone vector field inclusion problems. Furthermore, we apply our methods to solve a family of minimization problems, compute Frechét mean and geometric median in CAT(0) spaces, and solve a kinematic problem in robotic motion control. Finally, we give a numerical example to show the efficiency and robustness of the proposed scheme in comparison to a known scheme in the literature.
[1] | M. Bacák, Computing medians and means in Hadamard spaces, SIAM J. Optimiz., 24 (2014), 1542–1566. https://doi.org/10.1137/140953393 doi: 10.1137/140953393 |
[2] | M. Bacák, Old and new challenges in Hadamard spaces, arXiv preprint arXiv: 1807.01355, (2018), 1–33. |
[3] | I. D. Berg, I. G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geometriae Dedicata, 133 (2008), 195–218. https://doi.org/10.1007/s10711-008-9243-3 doi: 10.1007/s10711-008-9243-3 |
[4] | M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-3-662-12494-9 |
[5] | K. S. Brown, Buildings, Springer, 76–98, 1989. https://doi.org/10.1007/978-1-4612-1019-1_4 |
[6] | F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 41 (1972), 5–251. https://doi.org/10.1007/978-3-642-87942-5_3 |
[7] | P. Chaipunya, F. Kohsaka, P. Kumam, Monotone vector fields and generation of nonexpansive semigroups in complete CAT(0) spaces, Numer. Func. Anal. Opt., (2021), 1–30. https://doi.org/10.1080/01630563.2021.1931879 |
[8] | P. Chaipunya, P. kumam, On the proximal point method in Hadamard spaces, Optimization, 66 (2017), 1647–1665. https://doi.org/10.1080/02331934.2017.1349124 doi: 10.1080/02331934.2017.1349124 |
[9] | H. Dehghan, C. Izuchukwu, O. Mewomo, D. Taba, G. Ugwunnadi, Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces, Quaest. Math., 43 (2020), 975–998. https://doi.org/10.2989/16073606.2019.1593255 doi: 10.2989/16073606.2019.1593255 |
[10] | S. Dhompongsa, A Kaewkhao, B. Panyanak, On Kirk's strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces, Nonlinear Anal. Theor., 75 (2012), 459–468. https://doi.org/10.1016/j.na.2011.08.046 doi: 10.1016/j.na.2011.08.046 |
[11] | S. Dhompongsa, W. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex A., 8 (2007), 35. https://doi.org/10.1016/j.na.2011.08.046 doi: 10.1016/j.na.2011.08.046 |
[12] | S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. Theor., 65 (2006), 762–772. https://doi.org/10.1016/j.na.2005.09.044 doi: 10.1016/j.na.2005.09.044 |
[13] | S. Dhompongsa, B. Panyanak On $\triangle$-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572–2579. https://doi.org/10.1016/j.camwa.2008.05.036 doi: 10.1016/j.camwa.2008.05.036 |
[14] | A. Feragen, S. Hauberg, M. Nielsen, F. Lauze, Means in spaces of tree-like shapes, International Conference on Computer Vision, (2011), 736–746. https://doi.org/10.1109/iccv.2011.6126311 |
[15] | K. Goebel, R. Simeon Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Dekker, 1984. https://doi.org/10.1112/blms/17.3.293 |
[16] | O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403–419. https://doi.org/10.1137/0329022 doi: 10.1137/0329022 |
[17] | B. A. Kakavandi, M. Amini, Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. Theory., 73 (2010), 3450–3455. https://doi.org/10.1016/j.na.2010.07.033 doi: 10.1016/j.na.2010.07.033 |
[18] | S. Kamimura, W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, 106 (2000), 226–240. https://doi.org/10.1006/jath.2000.3493 doi: 10.1006/jath.2000.3493 |
[19] | K. Khammahawong, P. Kumam, P. Chaipunya, J. Martínez-Moreno, Tseng's methods for inclusion problems on Hadamard manifolds, Optimization, (2021), 1–35. https://doi.org/10.1080/02331934.2021.1940179 |
[20] | K. Khammahawong, P. Kumam, P. Chaipunya, J. Yao, C. Wen, W. Jirakitpuwapat, An extragradient algorithm for strongly pseudomonotone equilibrium problems on Hadamard manifolds, Thai J. Math., 18 (2020), 350–371. |
[21] | H. Khatibzadeh, S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aus. Math. Soc., 103 (2017), 70–90. https://doi.org/10.1017/s1446788716000446 doi: 10.1017/s1446788716000446 |
[22] | W. A. Kirk, Fixed point theorems in spaces and-trees, Fixed Point Theory A., 4 (2004), 1–8. https://doi.org/10.1155/s1687182004406081 doi: 10.1155/s1687182004406081 |
[23] | W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. Theory A., 68 (2008), 3689–3696. https://doi.org/10.1016/j.na.2007.04.011 doi: 10.1016/j.na.2007.04.011 |
[24] | W. A. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014. https://doi.org/10.1007/978-3-319-10927-5 |
[25] | B. Martinet, Brève communication, Régularisation d'inéquations variationnelles par approximations successives, Revue française d'informatique et de recherche opérationnelle. Série rouge, 4 (1970), 154–158. https://doi.org/10.1051/m2an/197004r301541 |
[26] | I. Nikolaev, The tangent cone of an Aleksandrov space of curvature $\leq k$, Manuscripta Math., 86 (1995), 137–147. https://doi.org/10.1007/bf02567983 doi: 10.1007/bf02567983 |
[27] | F. Ogbuisi, O. Mewomo, Iterative solution of split variational inclusion problem in a real Banach spaces, Afr. Mat., 28 (2017), 295–309. https://doi.org/10.1007/s13370-016-0450-z doi: 10.1007/s13370-016-0450-z |
[28] | S. Ranjbar, H. Khatibzadeh, Strong and $\Delta$-Convergence to a Zero of a Monotone Operator in CAT(0) Spaces, Mediterr. J. Math., 14 (2017), 1–15. https://doi.org/10.1007/s00009-017-0885-y doi: 10.1007/s00009-017-0885-y |
[29] | S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. Theory, 15 (1990), 537–558. https://doi.org/10.1016/0362-546x(90)90058-o doi: 10.1016/0362-546x(90)90058-o |
[30] | R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898. https://doi.org/10.1137/0314056 doi: 10.1137/0314056 |
[31] | Y. Shehu, X. Qin, J. Yao, Weak and linear convergence of proximal point algorithm with reflections, J. Nonlinear Convex Anal., 22 (2021), 299–307. https://doi.org/10.23952/jnva.5.2021.6.03 doi: 10.23952/jnva.5.2021.6.03 |
[32] | M. Sun, J. Liu, Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng., 2020 (2020). https: //doi.org/10.1155/2020/9175496 |
[33] | W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Model., 32 (2000), 1463–1471. https://doi.org/10.1016/s0895-7177(00)00218-1 doi: 10.1016/s0895-7177(00)00218-1 |
[34] | G. Ugwunnadi, C. Izuchukwu, O. Mewomo, Strong convergence theorem for monotone inclusion problem in CAT(0) spaces, Afr. Mat., 30 (2019), 151–169. https://doi.org/10.1007/s13370-018-0633-x doi: 10.1007/s13370-018-0633-x |