Survey Special Issues

Game theory and evolutionary optimization approaches applied to resource allocation problems in computing environments: A survey

  • Received: 29 July 2021 Accepted: 29 September 2021 Published: 25 October 2021
  • Today's intelligent computing environments, including the Internet of Things (IoT), Cloud Computing (CC), Fog Computing (FC), and Edge Computing (EC), allow many organizations worldwide to optimize their resource allocation regarding the quality of service and energy consumption. Due to the acute conditions of utilizing resources by users and the real-time nature of the data, a comprehensive and integrated computing environment has not yet provided a robust and reliable capability for proper resource allocation. Although traditional resource allocation approaches in a low-capacity hardware resource system are efficient for small-scale resource providers, for a complex system in the conditions of dynamic computing resources and fierce competition in obtaining resources, they cannot develop and adaptively manage the conditions optimally. To optimize the resource allocation with minimal delay, low energy consumption, minimum computational complexity, high scalability, and better resource utilization efficiency, CC/FC/EC/IoT-based computing architectures should be designed intelligently. Therefore, the objective of this research is a comprehensive survey on resource allocation problems using computational intelligence-based evolutionary optimization and mathematical game theory approaches in different computing environments according to the latest scientific research achievements.

    Citation: Shahab Shamshirband, Javad Hassannataj Joloudari, Sahar Khanjani Shirkharkolaie, Sanaz Mojrian, Fatemeh Rahmani, Seyedakbar Mostafavi, Zulkefli Mansor. Game theory and evolutionary optimization approaches applied to resource allocation problems in computing environments: A survey[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9190-9232. doi: 10.3934/mbe.2021453

    Related Papers:

  • Today's intelligent computing environments, including the Internet of Things (IoT), Cloud Computing (CC), Fog Computing (FC), and Edge Computing (EC), allow many organizations worldwide to optimize their resource allocation regarding the quality of service and energy consumption. Due to the acute conditions of utilizing resources by users and the real-time nature of the data, a comprehensive and integrated computing environment has not yet provided a robust and reliable capability for proper resource allocation. Although traditional resource allocation approaches in a low-capacity hardware resource system are efficient for small-scale resource providers, for a complex system in the conditions of dynamic computing resources and fierce competition in obtaining resources, they cannot develop and adaptively manage the conditions optimally. To optimize the resource allocation with minimal delay, low energy consumption, minimum computational complexity, high scalability, and better resource utilization efficiency, CC/FC/EC/IoT-based computing architectures should be designed intelligently. Therefore, the objective of this research is a comprehensive survey on resource allocation problems using computational intelligence-based evolutionary optimization and mathematical game theory approaches in different computing environments according to the latest scientific research achievements.



    加载中


    [1] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, P. A. Polakos, A comprehensive survey on fog computing: State-of-the-art and research challenges, IEEE Commun. Surv. Tutorials, 20 (2017), 416–464.
    [2] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A survey, IEEE Int. Things, 5 (2017), 450–465.
    [3] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, A. Ahmed, Edge computing: A survey, Future Gener. Comput. Syst., 97 (2019), 219–235. doi: 10.1016/j.future.2019.02.050
    [4] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and computation offloading, IEEE Commun. Surv. Tutorials, 19 (2017), 1628–1656. doi: 10.1109/COMST.2017.2682318
    [5] S. Agarwal, S. Yadav, A. K. Yadav, An efficient architecture and algorithm for resource provisioning in fog computing, Int. J. Inf. Eng. Electron. Bus., 8 (2016), 48.
    [6] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Gener. Comput. Syst., 25 (2009), 599–616. doi: 10.1016/j.future.2008.12.001
    [7] N. R. Mohan, E. B. Raj, Resource allocation techniques in cloud computing-research challenges for applications, in 2012 fourth international conference on computational intelligence and communication networks, IEEE, (2012), 556–560.
    [8] D. Ergu, G. Kou, Y. Peng, Y. Shi, Y. Shi, The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment, J. Supercomput., 64 (2013), 835–848. doi: 10.1007/s11227-011-0625-1
    [9] P. Mell, T. Grance, The NIST definition of cloud computing, 2011.
    [10] F. Shahid, H. Ashraf, A. Ghani, S. A. K. Ghayyur, S. Shamshirband, E. Salwana, PSDS-proficient security over distributed storage: A method for data transmission in cloud, IEEE Access, 8 (2020), 118285–118298. doi: 10.1109/ACCESS.2020.3004433
    [11] A. Shawish, M. Salama, Cloud computing: paradigms and technologies, in Inter-cooperative collective intelligence: Techniques and applications: Springer, Berlin, Heidelberg, (2014), 39–67.
    [12] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, Grid services for distributed system integration, Computer, 35 (2002), 37–46.
    [13] S. J. Baek, S. M. Park, S. H. Yang, E. H. Song, Y. S. Jeong, Efficient server virtualization using grid service infrastructure, J. Inf. Process. Syst., 6 (2010), 553–562. doi: 10.3745/JIPS.2010.6.4.553
    [14] A. Jula, E. Sundararajan, Z. Othman, Cloud computing service composition: A systematic literature review, Expert Syst. Appl., 41 (2014), 3809–3824. doi: 10.1016/j.eswa.2013.12.017
    [15] H. R. Faragardi, A. Rajabi, R. Shojaee, T. Nolte, Towards energy-aware resource scheduling to maximize reliability in cloud computing systems, in 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, IEEE, (2013), 1469–1479.
    [16] P. Samimi, Y. Teimouri, M. Mukhtar, A combinatorial double auction resource allocation model in cloud computing, Inf. Sci., 357 (2016), 201–216. doi: 10.1016/j.ins.2014.02.008
    [17] L. Ni, J. Zhang, C. Jiang, C. Yan, K. Yu, Resource allocation strategy in fog computing based on priced timed petri nets, IEEE Int. Things, 4 (2017), 1216–1228. doi: 10.1109/JIOT.2017.2709814
    [18] X. Zhao, S. S. Band, S. Elnaffar, M. Sookhak, A. Mosavi, E. Salwana, The implementation of border gateway protocol using software-defined networks: A systematic literature review, IEEE Access, 2021.
    [19] M. Aazam, E. N. Huh, Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT, in 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, IEEE, (2015), 687–694.
    [20] O. Skarlat, S. Schulte, M. Borkowski, P. Leitner, Resource provisioning for IoT services in the fog, in 2016 IEEE 9th international conference on service-oriented computing and applications (SOCA), IEEE, (2016), 32–39.
    [21] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things, in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, (2012), 13–16.
    [22] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, R. Buyya, FOCAN: A Fog-supported smart city network architecture for management of applications in the Internet of Everything environments, J Parallel Distr. Comput., 132 (2019), 274–283. doi: 10.1016/j.jpdc.2018.07.003
    [23] B. Varghese, N. Wang, D. S. Nikolopoulos, R. Buyya, Feasibility of fog computing, in Handbook of Integration of Cloud Computing, Cyber Physical Systems and Internet of Things, Springer, (2020), 127–146.
    [24] X. Li, Y. Liu, H. Ji, H. Zhang, V. C. Leung, Optimizing resources allocation for fog computing-based Internet of Things networks, IEEE Access, 7 (2019), 64907–64922. doi: 10.1109/ACCESS.2019.2917557
    [25] I. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and security issues, in 2014 federated conference on computer science and information systems, IEEE, (2014), 1–8.
    [26] A. Singh, Y. Viniotis, Resource allocation for IoT applications in cloud environments, in 2017 International Conference on Computing, Networking and Communications (ICNC), IEEE, (2017), 719–723.
    [27] M. H. Homaei, E. Salwana, S. Shamshirband, An enhanced distributed data aggregation method in the Internet of Things, Sensors, 19 (2019), 3173. doi: 10.3390/s19143173
    [28] Y. Gu, Z. Chang, M. Pan, L. Song, Z. Han, Joint radio and computational resource allocation in IoT fog computing, IEEE Trans. Veh. Technol., 67 (2018), 7475–7484. doi: 10.1109/TVT.2018.2820838
    [29] S. F. Abedin, M. G. R. Alam, S. A. Kazmi, N. H. Tran, D. Niyato, C. S. Hong, Resource allocation for ultra-reliable and enhanced mobile broadband IoT applications in fog network, IEEE Trans. Commun., 67 (2018), 489–502.
    [30] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, et al., Dynamic resource allocation for load balancing in fog environment, Wirel. Commun. Mob. Comput., 2018 (2018).
    [31] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges, IEEE Int. Things, 3 (2016), 637–646. doi: 10.1109/JIOT.2016.2579198
    [32] B. Frankovič, I. Budinská, Advantages and disadvantages of heuristic and multi agents approaches to the solution of scheduling problem, IFAC Proc. Vol., 33 (2000), 367–372.
    [33] M. H. Mohamaddiah, A. Abdullah, S. Subramaniam, M. Hussin, A survey on resource allocation and monitoring in cloud computing, Int. J. Mach. Learn. Comput., 4 (2014), 31–38.
    [34] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, C. Maple, A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource management in fog computing, IEEE Access, 7 (2019), 115760–115773. doi: 10.1109/ACCESS.2019.2924958
    [35] Y. Jie, C. Guo, K. K. R. Choo, C. Z. Liu, M. Li, Game-theoretic resource allocation for fog-based industrial internet of things environment, IEEE Int. Things J., 7 (2020), 3041–3052. doi: 10.1109/JIOT.2020.2964590
    [36] R. Gibbons, A primer in game theory, 1992.
    [37] J. Moura, D. Hutchison, Game theory for multi-access edge computing: Survey, use cases, and future trends, IEEE Commun. Surv. Tutorials, 21 (2018), 260–288.
    [38] A. Yousafzai, A. Gani, R. M. Noor, M. Sookhak, H. Talebian, M. Shiraz, et al., Cloud resource allocation schemes: review, taxonomy, and opportunities, Knowl. Inf. Syst., 50 (2017), 347–381. doi: 10.1007/s10115-016-0951-y
    [39] M. Ghobaei-Arani, A. Souri, A. A. Rahmanian, Resource management approaches in fog computing: A comprehensive review, J Grid Comput., 18 (2020), 1–42. doi: 10.1007/s10723-019-09491-1
    [40] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman, J. Kolodziej, P. Balaji, et al., A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems, Computing, 98 (2016), 751–774. doi: 10.1007/s00607-014-0407-8
    [41] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya, A taxonomy and survey of energy-efficient data centers and cloud computing systems, in Advances in computers, Elsevier, (2011), 47–111.
    [42] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji, et al., Survey of techniques and architectures for designing energy-efficient data centers, IEEE Syst. J., 10 (2014), 507–519.
    [43] G. Aceto, A. Botta, W. De Donato, A. Pescapè, Cloud monitoring: A survey, Comput. Network, 57 (2013), 2093–2115. doi: 10.1016/j.comnet.2013.04.001
    [44] B. Jennings, R. Stadler, Resource management in clouds: Survey and research challenges, J. Network Syst. Manag., 23 (2015), 567–619. doi: 10.1007/s10922-014-9307-7
    [45] A. Goyal, S. Dadizadeh, A survey on cloud computing, Univ. B. C. Tech. Rep. CS, 508 (2009), 55–58.
    [46] H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-Allah, et al., A survey on resource allocation in high performance distributed computing systems, Parallel Comput., 39 (2013), 709–736. doi: 10.1016/j.parco.2013.09.009
    [47] L. Huang, H. S. Chen, T. T. Hu, Survey on resource allocation policy and job scheduling algorithms of cloud computing1, J. Softw., 8 (2013), 480–487.
    [48] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, F. Xia, S. A. Madani, Virtual machine migration in cloud data centers: a review, taxonomy, and open research issues, J. Supercomput., 71 (2015), 2473–2515. doi: 10.1007/s11227-015-1400-5
    [49] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, F. Xia, A survey on virtual machine migration and server consolidation frameworks for cloud data centers, J. Network Comput. Appl., 52 (2015), 11–25. doi: 10.1016/j.jnca.2015.02.002
    [50] V. Vinothina, R. Sridaran, P. Ganapathi, A survey on resource allocation strategies in cloud computing, Int. J. Adv. Comput. Sci. Appl., 3 (2012), 97–104. doi: 10.5121/acij.2012.3511
    [51] V. Anuradha, D. Sumathi, A survey on resource allocation strategies in cloud computing, in International Conference on Information Communication and Embedded Systems (ICICES2014), IEEE, (2014), 1–7.
    [52] E. Castaneda, A. Silva, A. Gameiro, M. Kountouris, An overview on resource allocation techniques for multi-user MIMO systems, IEEE Commun. Surv. Tutorials, 19 (2016), 239–284.
    [53] S. S. Manvi, G. K. Shyam, Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey, J. Network Comput. Appl., 41 (2014), 424–440. doi: 10.1016/j.jnca.2013.10.004
    [54] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, et al., Resource allocation for network slicing in 5G telecommunication networks: A survey of principles and models, IEEE Network, 33 (2019), 172–179. doi: 10.1109/MNET.2019.1900024
    [55] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos, et al. S. Papavassiliou, Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions, Comput. Network, 195 (2021), 108177. doi: 10.1016/j.comnet.2021.108177
    [56] L. Song, D. Niyato, Z. Han, E. Hossain, Game-theoretic resource allocation methods for device-to-device communication, IEEE Wirel. Commun., 21 (2014), 136–144.
    [57] H. Zhang, Y. Zhang, Y. Gu, D. Niyato, Z. Han, A hierarchical game framework for resource management in fog computing, IEEE Commun. Mag., 55 (2017), 52–57.
    [58] J. Klaimi, S. M. Senouci, M. A. Messous, Theoretical game approach for mobile users resource management in a vehicular fog computing environment, in 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), IEEE, (2018), 452–457.
    [59] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, Z. Han, Computing resource allocation in three-tier IoT fog networks: A joint optimization approach combining Stackelberg game and matching, IEEE Int. Things, 4 (2017), 1204–1215. doi: 10.1109/JIOT.2017.2688925
    [60] H. Munir, S. A. Hassan, H. Pervaiz, Q. Ni, A game theoretical network-assisted user-centric design for resource allocation in 5G heterogeneous networks, in 2016 IEEE 83rd vehicular technology conference (VTC Spring), IEEE, (2016), 1–5.
    [61] Y. Chen, Z. Li, B. Yang, K. Nai, K. Li, A Stackelberg game approach to multiple resources allocation and pricing in mobile edge computing, Future Gener. Comput. Syst., 108 (2020), 273–287. doi: 10.1016/j.future.2020.02.045
    [62] L. Liang, G. Feng, Y. Jia, Game-theoretic hierarchical resource allocation for heterogeneous relay networks, IEEE Trans. Veh. Technol., 64 (2014), 1480–1492.
    [63] A. Nezarat, G. Dastghaibifard, Efficient nash equilibrium resource allocation based on game theory mechanism in cloud computing by using auction, PloS one, 10 (2015), e0138424. doi: 10.1371/journal.pone.0138424
    [64] A. Nezarat, G. Dastghaibifard, A game theoretic method for resource allocation in scientific cloud, Int. J. Cloud Appl. Comput. (IJCAC), 6 (2016), 15–41.
    [65] B. Yang, Z. Li, S. Chen, T. Wang, K. Li, Stackelberg game approach for energy-aware resource allocation in data centers, IEEE Trans. Parallel Distr. Syst., 27 (2016), 3646–3658. doi: 10.1109/TPDS.2016.2537809
    [66] J. Huang, Y. Zhao, K. Sohraby, Resource allocation for intercell device-to-device communication underlaying cellular network: A game-theoretic approach, in 2014 23rd international conference on computer communication and networks (ICCCN), IEEE, (2014), 1–8.
    [67] D. Niyato, E. Hossain, A game-theoretic approach to competitive spectrum sharing in cognitive radio networks, in 2007 IEEE Wireless Communications and Networking Conference, IEEE, (2007), 16–20.
    [68] J. Huang, Y. Yin, Q. Duan, H. Yan, A game-theoretic analysis on context-aware resource allocation for device-to-device communications in cloud-centric internet of things, in 2015 3rd International Conference on Future Internet of Things and Cloud, IEEE, (2015), 80–86.
    [69] W. Wei, X. Fan, H. Song, X. Fan, J. Yang, Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing, IEEE Trans. Serv. Comput., 11 (2016), 78–89.
    [70] H. Zhang, J. Du, J. Cheng, K. Long, V. C. Leung, Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach, IEEE Trans. Wirel. Commun., 17 (2017), 1882–1892.
    [71] J. Zhang, W. Xia, F. Yan, L. Shen, Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing, IEEE Access, 6 (2018), 19324–19337. doi: 10.1109/ACCESS.2018.2819690
    [72] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing, IEEE ACM Trans. Network, 24 (2015), 2795–2808.
    [73] S. Guo, B. Xiao, Y. Yang, Y. Yang, Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing, in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, IEEE, (2016), 1–9.
    [74] G. S. Li, Y. Zhang, M. L. Wang, J. H. Wu, Q. Y. Lin, X. F. Sheng, Resource Management Framework Based on the Stackelberg Game in Vehicular Edge Computing, Complexity, 2020 (2020).
    [75] P. S. Pillai, S. Rao, Resource allocation in cloud computing using the uncertainty principle of game theory, IEEE Syst. J., 10 (2016), 637–648. doi: 10.1109/JSYST.2014.2314861
    [76] X. Xu, H. Yu, A game theory approach to fair and efficient resource allocation in cloud computing, Math. Probl. Eng., 2014 (2014).
    [77] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, J. Rodriguez, Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach, IEEE Trans. Veh. Technol., 68 (2019), 3113–3125. doi: 10.1109/TVT.2019.2894851
    [78] K. Wang, Z. Ding, D. K. So, G. K. Karagiannidis, Stackelberg game of energy consumption and latency in MEC systems With NOMA, IEEE Trans. Commun., 69 (2021), 2191–2206. doi: 10.1109/TCOMM.2021.3049356
    [79] S. G. Domanal, R. M. R. Guddeti, R. Buyya, A hybrid bio-inspired algorithm for scheduling and resource management in cloud environment, IEEE Trans. Serv. Comput., 13 (2017), 3–15.
    [80] X. S. Yang, Nature-inspired Optimization Algorithms, Academic Press, 2020.
    [81] A. Arram, M. Ayob, A. Sulaiman, Hybrid bird mating optimizer with single-based algorithms for combinatorial optimization problems, IEEE Access, 9 (2021), 115972–115989. doi: 10.1109/ACCESS.2021.3096125
    [82] N. S. Jaddi, S. Abdullah, A novel auction-based optimization algorithm and its application in rough set feature selection, IEEE Access, 9 (2021), 106501–106514. doi: 10.1109/ACCESS.2021.3098808
    [83] Z. J. Lee, S. F. Su, C. Y. Lee, Y. S. Hung, A heuristic genetic algorithm for solving resource allocation problems, Knowl. Inf. Syst., 5 (2003), 503–511. doi: 10.1007/s10115-003-0082-0
    [84] Z. J. Lee, C. Y. Lee, A hybrid search algorithm with heuristics for resource allocation problem, Inf. Sci., 173 (2005), 155–167. doi: 10.1016/j.ins.2004.07.010
    [85] Y. Liu, J. E. Fieldsend, G. Min, A framework of fog computing: Architecture, challenges, and optimization, IEEE Access, 5 (2017), 25445–25454. doi: 10.1109/ACCESS.2017.2766923
    [86] M. Kim, I. Y. Ko, An efficient resource allocation approach based on a genetic algorithm for composite services in IoT environments, in 2015 IEEE International Conference on Web Services, IEEE, (2015), 543–550.
    [87] L. Chimakurthi, Power efficient resource allocation for clouds using ant colony framework, preprint, arXiv: 1102.2608.
    [88] B. Han, J. Lianghai, H. D. Schotten, Slice as an evolutionary service: Genetic optimization for inter–slice resource management in 5G networks, IEEE Access, 6 (2018), 33137–33147. doi: 10.1109/ACCESS.2018.2846543
    [89] J. Tang, D. K. So, E. Alsusa, K. A. Hamdi, A. Shojaeifard, Resource allocation for energy efficiency optimization in heterogeneous networks, IEEE J. Sel. Area Commun., 33 (2015), 2104–2117. doi: 10.1109/JSAC.2015.2435351
    [90] Y. Liu, S. L. Zhao, X. K. Du, S. Q. Li, Optimization of resource allocation in construction using genetic algorithms, in 2005 International Conference on Machine Learning and Cybernetics, IEEE, 6 (2005), 3428–3432.
    [91] J. Zhang, W. Xia, Z. Cheng, Q. Zou, B. Huang, F. Shen, et al., An evolutionary game for joint wireless and cloud resource allocation in mobile edge computing, in: ; 2017. IEEE. pp. 1–6.
    [92] X. L. Zheng, L. Wang. A Pareto based fruit fly optimization algorithm for task scheduling and resource allocation in cloud computing environment, in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), IEEE, (2016), 3393–3400.
    [93] R. M. Guddeti, R. Buyya, A hybrid bio-inspired algorithm for scheduling and resource management in cloud environment, IEEE Trans. Serv. Comput., 2017.
    [94] E. Arianyan, D. Maleki, A. Yari, I. Arianyan, Efficient resource allocation in cloud data centers through genetic algorithm, in 6th International Symposium on Telecommunications (IST), IEEE, (2012), 566–570.
    [95] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing, Future Gener. Comput. Syst., 28 (2012), 755–768. doi: 10.1016/j.future.2011.04.017
    [96] Z. Cao, J. Lin, C. Wan, Y. Song, Y. Zhang, X. Wang, Optimal cloud computing resource allocation for demand side management in smart grid, IEEE Trans. Smart Grid, 8 (2016), 1943–1955.
    [97] S. H. da Mata, P. R. Guardieiro, A genetic algorithm based approach for resource allocation in LTE uplink, in 2014 International Telecommunications Symposium (ITS), IEEE, (2014), 1–5.
    [98] E. Hachicha, K. Yongsiriwit, M. Sellami, W. Gaaloul, Genetic-based configurable cloud resource allocation in QoS-aware business process development, in 2017 IEEE International Conference on Web Services (ICWS), IEEE, (2017), 836–839.
    [99] K. Ma, A. Bagula, C. Nyirenda, O. Ajayi, An iot-based fog computing model, Sensors, 19 (2019), 2783.
    [100] L. Ngqakaza, A. Bagula, Least path interference beaconing protocol (libp): A frugal routing protocol for the internet-of-things, in International Conference on Wired/Wireless Internet Communications, Springer, (2014), 148–161.
    [101] A. Bagula, D. Djenouri, E. Karbab, Ubiquitous sensor network management: The least interference beaconing model, in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), IEEE, (2013), 2352–2356.
    [102] A. B. Bagula, D. Djenouri, E. Karbab, On the relevance of using interference and service differentiation routing in the internet-of-things, Int. Things, Smart Spaces Next Gener. Networking, Springer, (2013), 25–35.
    [103] R. Kumar, A. Kumar, A. Sharma, A bio-inspired approach for power and performance aware resource allocation in clouds, in MATEC Web of Conferences, EDP Sciences, 57 (2016), 02008.
    [104] J. J. Rao, K. V. Cornelio, An optimized resource allocation approach for data-Intensive workloads using topology-Aware resource allocation, in 2012 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), IEEE, (2012), 1–4.
    [105] G. Lee, N. Tolia, P. Ranganathan, R. H. Katz, Topology-aware resource allocation for data-intensive workloads, in Proceedings of the first ACM asia-pacific workshop on Workshop on systems, (2010), 1–6.
    [106] S. B. Akintoye, A. Bagula, Improving quality-of-service in cloud/fog computing through efficient resource allocation, Sensors, 19 (2019), 1267. doi: 10.3390/s19061267
    [107] C. W. Tsai, SEIRA: An effective algorithm for IoT resource allocation problem, Comput. Commun., 119 (2018), 156–166. doi: 10.1016/j.comcom.2017.10.006
    [108] C. W. Tsai, An effective WSN deployment algorithm via search economics, Comput. Network, 101 (2016), 178–191. doi: 10.1016/j.comnet.2016.01.005
    [109] J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA, 1 (1967), 281–297.
    [110] A. K. Sangaiah, A. A. R. Hosseinabadi, M. B. Shareh, S. Y. Bozorgi Rad, A. Zolfagharian, N. Chilamkurti, IoT resource allocation and optimization based on heuristic algorithm, Sensors, 20 (2020), 539. doi: 10.3390/s20020539
    [111] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    [112] S. K. Chaharsooghi, A. H. M. Kermani, An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP), Appl. Math. Comput., 200 (2008), 167–177.
    [113] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD Thesis, Politecnico di Milano, 1992.
    [114] Y. Choi, Y. Lim, Optimization approach for resource allocation on cloud computing for iot, Int. J. Distrib. Sens. Networks, 12 (2016), 3479247. doi: 10.1155/2016/3479247
    [115] J. Yan, W. Pu, S. Zhou, H. Liu, M. S. Greco, Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks, IEEE Trans. Signal Process., 68 (2020), 4055–4068. doi: 10.1109/TSP.2020.3007313
    [116] K. Karthiban, J. S. Raj, An efficient green computing fair resource allocation in cloud computing using modified deep reinforcement learning algorithm, Soft Comput., (2020), 1–10.
    [117] H. Ye, G. Y. Li, B. H. F. Juang, Deep reinforcement learning based resource allocation for V2V communications, IEEE Trans. Veh. Technol., 68 (2019), 3163–3173. doi: 10.1109/TVT.2019.2897134
    [118] F. Hussain, S. A. Hassan, R. Hussain, E. Hossain, Machine learning for resource management in cellular and IoT networks: Potentials, current solutions, and open challenges, IEEE Commun. Surv. Tutorials, 22 (2020), 1251–1275. doi: 10.1109/COMST.2020.2964534
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3747) PDF downloads(264) Cited by(9)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog