Research article

Dynamics of a within-host drug resistance model with impulsive state feedback control


  • Received: 22 July 2022 Revised: 06 November 2022 Accepted: 21 October 2022 Published: 17 November 2022
  • Bacterial resistance poses a major hazard to human health, and is caused by the misuse and overuse of antibiotics. Thus, it is imperative to investigate the optimal dosing strategy to improve the treatment effect. In this study, a mathematical model of antibiotic-induced resistance is presented to improve the antibiotic effectiveness. First, conditions for the global asymptotical stability of the equilibrium without pulsed effect are given according to the Poincaré-Bendixson Theorem. Second, a mathematical model of the dosing strategy with impulsive state feedback control is also formulated to reduce drug resistance to an acceptable level. The existence and stability of the order-1 periodic solution of the system are discussed to obtain the optimal control of antibiotics. Finally, our conclusions are confirmed by means of numerical simulations.

    Citation: Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui. Dynamics of a within-host drug resistance model with impulsive state feedback control[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103

    Related Papers:

  • Bacterial resistance poses a major hazard to human health, and is caused by the misuse and overuse of antibiotics. Thus, it is imperative to investigate the optimal dosing strategy to improve the treatment effect. In this study, a mathematical model of antibiotic-induced resistance is presented to improve the antibiotic effectiveness. First, conditions for the global asymptotical stability of the equilibrium without pulsed effect are given according to the Poincaré-Bendixson Theorem. Second, a mathematical model of the dosing strategy with impulsive state feedback control is also formulated to reduce drug resistance to an acceptable level. The existence and stability of the order-1 periodic solution of the system are discussed to obtain the optimal control of antibiotics. Finally, our conclusions are confirmed by means of numerical simulations.



    加载中


    [1] K. Ababneh, I. E. Alkhazali, The impact of antibiotic abuse: health and economic burden, J. Sci. Tech. Res., 16 (2019), 11794–11797. https://doi.org/10.1086/375081 doi: 10.1086/375081
    [2] A. L. C. Gomes, J. E. Galagan, D. Segrè, Resource competition may lead to effective treatment of antibiotic resistant infections, PloS One, 8 (2013), e80774–e80789. http://dx.doi.org/10.1371/journal.pone.0080775 doi: 10.1371/journal.pone.0080775
    [3] L. G. Kavanaugh, S. K. Harrison, J. N. Flanagan, T. R. Steck, Antibiotic cycling reverts extensive drug resistance in Burkholderia multivorans, Antimicrob. Agents Chemother., 65 (2021), e00611–e00621. https://doi.org/10.1128/AAC.00611-21 doi: 10.1128/AAC.00611-21
    [4] M. H. Kollef, Is antibiotic cycling the answer to preventing the emergence of bacterial resistance in the intensive care unit?, Clin. Infect. Dis., 43 (2006), S82–S88. https://doi.org/10.1086/504484 doi: 10.1086/504484
    [5] J. Cadena, C. A. Taboada, D. S. Burgess, J. Z. Ma, J. S. Lewis, C. O. Freytes, et al., Antibiotic cycling to decrease bacterial antibiotic resistance: a 5-year experience on a bone marrow transplant unit, Bone Marrow Transplant., 40 (2007), 151–155. https://doi.org/10.1038/sj.bmt.1705704 doi: 10.1038/sj.bmt.1705704
    [6] P. J. Van Duijn, W. Verbrugghe, P. G. Jorens, F. Spöhr, D. Schedler, M. Deja, et al., The effects of antibiotic cycling and mixing on acquisition of antibiotic resistant bacteria in the ICU: A post-hoc individual patient analysis of a prospective cluster-randomized crossover study, PloS One, 20 (2022), e0265720–e0265731. https://doi.org/10.1016/S1473-3099(18)30056-2 doi: 10.1016/S1473-3099(18)30056-2
    [7] G. M. Conlon-Bingham, M. Aldeyab, M. Scott, M. P. Kearney, D. Farren, F. Gilmore, et al., Effects of antibiotic cycling policy on incidence of healthcare-associated MRSA and clostridioides difficile infection in secondary healthcare settings, Emerging Infect. Dis., 25 (2019), 52–62. https://doi.org/10.3201/eid2501.180111 doi: 10.3201/eid2501.180111
    [8] M. Hegreness, N. Shoresh, D. Damian, D. Hartl, R. Kishony, Accelerated evolution of resistance in multidrug environments, Proc. Natl. Acad. Sci., 105 (2008), 13977–13981. https://doi.org/10.1073/pnas.0805965105 doi: 10.1073/pnas.0805965105
    [9] P. Ankomah, B. R. Levin, S. M. Fortune, Two-drug antimicrobial chemotherapy: A mathematical model and experiments with Mycobacterium marinum, PloS Pathog., 8 (2012), e1002487–e1002499. https://doi.org/10.1128/AAC.00611-21 doi: 10.1128/AAC.00611-21
    [10] S. Suzuki, T. Horinouchi, C. Furusawa, Acceleration and suppression of resistance development by antibiotic combinations, BMC Genomics, 18 (2017), 1–10. https://doi.org/10.1186/s12864-017-3718-2 doi: 10.1186/s12864-017-3718-2
    [11] G. Chevereau, T. Bollenbach, Systematic discovery of drug interaction mechanisms, Mol. Syst. Biol., 11 (2015), 807. https://doi.org/10.15252/msb.20156098 doi: 10.15252/msb.20156098
    [12] P. J. Yeh, M. J. Hegreness, A. P. Aiden, R. Kishony, Drug interactions and the evolution of antibiotic resistance, Nat. Rev. Microbiol., 7 (2009), 460–466. https://doi.org/10.1038/nrmicro2133 doi: 10.1038/nrmicro2133
    [13] J. P. Torella, R. Chait, R. Kishony, Optimal drug synergy in antimicrobial treatments, PLoS Comput. Biol., 6 (2010), e1000796–e1000808. https://doi.org/10.1371/journal.pcbi.1000796 doi: 10.1371/journal.pcbi.1000796
    [14] M. Zhang, Y. Zhao, X. Song, Dynamics of bilateral control system with state feedback for price adjustment strategy, Int. J. Biomath., 14 (2021), 2150031. https://doi.org/10.1142/S1793524521500315 doi: 10.1142/S1793524521500315
    [15] L. Böttcher, H. Gersbach, A refunding scheme to incentivize narrow-spectrum antibiotic development, Bull. Math. Biol., 84 (2022), 1–32. https://doi.org/10.1007/s11538-022-01013-7 doi: 10.1007/s11538-022-01013-7
    [16] H. Mena, L. M. Pfurtscheller, J. P. Romero-Leiton, Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control, Math. Biosci. Eng., 17 (2020), 4477–4499. https://doi.org/10.3934/mbe.2020247 doi: 10.3934/mbe.2020247
    [17] A. M. Garber, Antibiotic exposure and resistance in mixed bacterial populations, Theor. Popul. Biol., 32 (1987), 326–346. https://doi.org/10.1016/0040-5809(87)90053-0 doi: 10.1016/0040-5809(87)90053-0
    [18] E. Ibargüen-Mondragón, L. Esteva, M. Cerón Gómez, An optimal control problem applied to plasmid-mediated antibiotic resistance, J. Appl. Math. Comput., 133 (2022), 1635–1667. https://doi.org/10.1007/s12190-021-01583-0 doi: 10.1007/s12190-021-01583-0
    [19] E. Massad, M. N. Burattini, F. A. B. Coutinho, An optimization model for antibiotic use, Appl. Math. Comput., 201 (2008), 161–167. https://doi.org/https://doi.org/10.1016/j.amc.2007.12.007 doi: 10.1016/j.amc.2007.12.007
    [20] K. I. Udekwu, H. Weiss, Pharmacodynamic considerations of collateral sensitivity in design of antibiotic treatment regimen, Drug Des. Devel. Ther., 12 (2018), 2249–2257. https://doi.org/10.2147/DDDT.S164316 doi: 10.2147/DDDT.S164316
    [21] T. Wang, Microbial insecticide model and homoclinic bifurcation of impulsive control system, Int. J. Biomath., 14 (2021), 2150043. https://doi.org/10.1142/S1793524521500431 doi: 10.1142/S1793524521500431
    [22] J. N. A. Tetteh, F. Matthäus, E. A. Hernandez-Vargas, A survey of within-host and between-hosts modelling for antibiotic resistance, Biosystems, 196 (2020), 104182–104197. https://doi.org/10.1016/j.biosystems.2020.104182 doi: 10.1016/j.biosystems.2020.104182
    [23] J. N. A. Tetteh, S. Olaru, C. Parra-Rojas, Lyapunov-based switching to mitigate antimicrobial resistance, IFAC-PapersOnLine, 53 (2020), 16049–16054. https://doi.org/10.1016/j.ifacol.2020.12.416 doi: 10.1016/j.ifacol.2020.12.416
    [24] M. Sun, Y. Liu, S. Liu, Z. Hu, L. Chen, A novel method for analyzing the stability of periodic solution of impulsive state feedback model, Appl. Math. Comput., 273 (2016), 425–434. https://doi.org/10.1016/j.amc.2015.09.093 doi: 10.1016/j.amc.2015.09.093
    [25] L. Chen, X. Liang, Y. Pei, The periodic solutions of the impulsive state feedback dynamical system, Commun. Math. Biol. Neurosci., (2018), 14–29. https://doi.org/doi.org/10.28919/cmbn/3754 doi: 10.28919/cmbn/3754
    [26] X. Zhang, C. Li, H. Li, Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay, J. Franklin Inst., 359 (2022), 1196–1214. https://doi.org/10.1016/j.jfranklin.2021.11.013 doi: 10.1016/j.jfranklin.2021.11.013
    [27] S. Gao, Z. Teng, D. Xie, Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos Solitons Fractals, 40 (2009), 1004–1011. https://doi.org/10.1016/j.chaos.2007.08.056 doi: 10.1016/j.chaos.2007.08.056
    [28] S. Q. Zhang, X. Z. Meng, T. Feng, T. H. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal. Hybrid Syst., 26 (2017), 19–37. https://doi.org/10.1016/j.nahs.2017.04.003 doi: 10.1016/j.nahs.2017.04.003
    [29] Z. Zhao, F. Tao, Q. Li, Dynamic analysis of conversion from a drug-sensitivity strain to a drug-resistant strain, Int. J. Biomath., 11 (2018), 1850113–1850127. https://doi.org/10.1142/S1793524518501139 doi: 10.1142/S1793524518501139
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1847) PDF downloads(91) Cited by(2)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog