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Abstract: Bacterial resistance poses a major hazard to human health, and is caused by the misuse
and overuse of antibiotics. Thus, it is imperative to investigate the optimal dosing strategy to
improve the treatment effect. In this study, a mathematical model of antibiotic-induced resistance is
presented to improve the antibiotic effectiveness. First, conditions for the global asymptotical stability
of the equilibrium without pulsed effect are given according to the Poincaré-Bendixson Theorem.
Second, a mathematical model of the dosing strategy with impulsive state feedback control is also
formulated to reduce drug resistance to an acceptable level. The existence and stability of the order-1
periodic solution of the system are discussed to obtain the optimal control of antibiotics. Finally, our
conclusions are confirmed by means of numerical simulations.
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1. Introduction

Drug resistance is the possibility of resisting the effects of antibiotics generated either to eradicate
or to control bacteria, and it brings many important public health problems, particularly in intensive
care units [1]. Many strategies have been applied to deal with drug resistance, such as drug restrictions
and multiple-drug therapy [2]. However, more studies are required to evaluate the potential efficacy of
both strategies in reducing or preventing drug resistance and acquire some quantitative understanding
of the mechanism of drug resistance.
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Drug restrictions comprise suspending a given class of antibiotics for some period of time, while
other antibiotics are still used for treatment, once drug resistance emerges [2]. It stems from the
reduction of drug resistance in the absence of selection pressure due to the cost of resistance. In
particular, drug cycling is considered as a special case of restriction to specific classes of drugs, which
is implemented by alternating drugs at a certain time interval. In preceding studies [3–7], drug cycling
has been found to have a positive impact on the use of antibiotic therapy. Although one of these
studies yields different results [4], there have been studies demonstrating the detrimental effects of the
approach [5]. In order to better combat drug resistance, researchers acknowledge that further research
on the approach is needed.

Another approach to tackle drug resistance is the multiple-drug therapy presented in [8–10]. Drug
interactions often occur during multiple-drug therapy, which can be classified as synergistic or
antagonistic. Synergism refers to the interaction of two drugs to amplify the effect during treatment,
and can quantitatively analyze the growth rate of drug-resistant bacteria under mixed drug
therapy [11], while antagonism is the opposite [12]. Drug synergy reduces the number of used
antibiotics, which can effectively reduce the costs and negative effects on patients. However, it has
been shown that the optimal strategy to reduce multiple-drug resistance does not always utilize
synergy among drugs, and sometimes antagonism may be more beneficial to reduce the concentration
of drug-resistant bacteria [13, 14].

Clinically, drug-resistant bacteria would not be so alarming if we were able to control their growth.
As a resolution, many mathematical models have been established to describe the different aspects of
antibiotic dynamics from the perspective of drug resistance generation and antibiotic therapy [15–17].
The mathematical models were presented to optimize the dosage of antibiotics [18–20]. Some studies
have also focused on the analysis of changes in antibiotic resistance in the host [21–23]. Tetteh et
al. [22] focused on the role between the host immune response and antibiotic treatment based on
pharmacodynamic and pharmacokinetic approaches. In addition, Garber et al. [17] developed the
following mathematical model to explore the effects of antibiotics on populations of sensitive and
drug-resistant bacteria: 

dx
dt
= (α − ra − β(x + y))x + δy,

dy
dt
= (α − β(x + y))y − δy,

(1.1)

where the densities of sensitive and drug-resistant bacteria are expressed in terms of x(t) and y(t). α is
the growth rate of strain one, less r times the antibiotic concentration a. Due to the limited nutrients
in the body, competition between the two bacteria to survive will cause the bacteria to be eliminated at
a rate of β. The drug-resistant bacteria after losing resistance are very similar to susceptible bacteria,
and we can define the rate of conversion of drug-resistant bacteria to susceptible bacteria as δ. Through
qualitative analysis, Garber obtained threshold conditions for the extinction of drug-resistant strains.

Although most of the above models of drug resistance are described by using continuous dynamics,
the antibiotic dosing process is discontinuous. Therefore, it is more reasonable to describe it by using
an impulsive dynamical system.

Many scholars have done extensive research on the theory and applications of impulsive dynamical
systems [24–26]. For example, impulsive dynamical systems are used to study the treatment of some
infectious diseases [27], impulsive differential equations are used to study population control
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problems [28], and antibiotic dressing strategies are used to study the optimal timing of antibiotic
treatment [29]. In a similar way as in [29], we will formulate a mathematical model of a within-host
drug resistance model with impulsive state feedback control to control the development of the
resistant bacteria.

The paper is organized as follows. In Section 2, a within-host drug resistance model with
impulsive state feedback control is proposed. In Section 3, we determine the global asymptotic
stability of continuous dynamic systems by qualitative analysis. In Section 4, the existence and
uniqueness of the order-1 periodic solution are discussed, and the stability of the solutions is also
proposed. Finally, we will use numerical simulations to verify the correctness of the conclusions.

2. Model description

To effectively inhibit the growth of bacteria and viruses, antibiotics are usually used in the clinic.
However, it can get out of control when the same drug is used continuously for a long period of time.
At the same time, the disease becomes more difficult to cure because of the bacteria becoming resistant
to antibiotics. Therefore, we need to use higher concentrations of the drug or change the drug in
order to effectively control the growth of the bacteria. Subsequently, we try to use other drugs to deal
with the resistant bacteria. The new drugs could play a temporary role in the harmful bacteria. One
scenario, however, occurs periodically when bacteria become resistant to new drugs after long-term
use. Motivated by [17, 29], we consider that taking drugs not only reduces the growth rate of sensitive
bacteria, but also leads to the conversion of sensitive bacteria to drug-resistant bacteria. Thus, we give
the following system: 

dx
dt
= (α − ra − β(x + y))x + δy,

dy
dt
= (α − β(x + y))y − δy + rax,

 y < h,

∆x = x(t+) − x(t−) = τh,
∆y = y(t+) − y(t−) = −τh,

}
y = h,

x(0) = x0 ≥ 0,
y(0) = y0 ≥ 0,

(2.1)

where ra shows conversion rate, due to the infusion of antibiotics, of the sensitive bacteria to drug-
resistant bacteria. h denotes the critical threshold value of the resistant bacteria which makes the drug
lose effectiveness for the patient. When the concentration of drug-resistant bacteria reaches a critical
threshold value, another drug is taken to prevent the growth of drug-resistant bacteria. The antibiotic
dosing strategy can be described by using impulsive state feedback control. τ(0 < 1 − τ << 1) is
the rate at which the resistant bacteria become the sensitive bacteria. The drug-resistant bacteria have
become sensitive to the new drug after the antibiotic dressing strategy although few bacteria remain
still resistant.

All the above parameters are nonnegative, and the biological significance of the other parameters
is given in system (1.1). The aim of this paper is to derive control measures to reinforce the effect of
antibiotics through pulsed kinetic studies.

For convenience, we give the following definitions and lemmas.
Definition (2.1) [18, 27] Suppose the state-dependent impulsive differential equations are given as
follows:

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2219–2231.



2222



dx
dt
= P(x, y),

dy
dt
= Q(x, y),

 (x, y) < M(x, y),

∆x = α(x, y),
∆y = β(x, y),

}
(x, y) ∈ M(x, y),

(2.2)

where M(x, y) is the impulsive set and a continuous mapping g : g(M(x, y)) = N(x, y) is the phase set.
Definition (2.2) [24, 29] Let M denote the impulsive set and N is the phase set. Suppose g : N → N
be a mapping. For any point P ∈ N, there exists a t1 > 0 such that F(P) = f (P, t1) = P1 ∈ M, P+1 =
φ(P1) ∈ N. Then g(P) = l(P+1 ) − l(P) is called the successor function of point P, and the point P+1 is
called the successor point of P.
Lemma 2.1. If g(P) = 0, the trajectory passing through point P is the order-1 periodic solution of the
system.
Lemma 2.2. [24, 29] Assuming continuous dynamical system (X,Ψ), if there exist two points A, B in
the phase set such that successor function g(A) > 0, g(B) < 0, we can find a point C between A and B
in the phase set satisfying g(C) = 0. So, there must exist an order-1 periodic solution passing through
point C.
Lemma 2.3. [25] Let n̂1n2

⋃
n2n1 denote order one circles, and assume the trajectory n̂1n2 is not

tangent to the impulsive set M. The successor of point l ∈ N is φ. The position between the points
n1, l, φ and the order-1 periodic solution is divided into three types:

Type 1: the order one circle n̂1n2
⋃

n2n1 is convex, and points l, φ are at the same side of n̂1n2 (see
Figure 1 (a));

Type 2: the order one circle n̂1n2
⋃

n2n1 is not convex, but points l, φ are at the same side of n̂1n2

(see Figure 1 (b));
Type 3: points l, φ are at the different sides of n̂1n2 (see Figure 1 (c)).

Figure 1. Three types of the order-1 periodic solution.

Theorem 2.1 [25] If the periodic solution of the semi-continuous system is orbitally stable, it needs
to satisfy

∂(P(x, y))
∂x

+
∂(Q(x, y))
∂y

< 0.

Theorem 2.2 [25] If there is a convex solution with period T in the semi-continuous system, it is
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one-sided asymptotic, and the integral satisfies:∫ T

0
(
∂(P(x, y))
∂x

+
∂(Q(x, y))
∂y

)dt < 0,

then the solution is orbitally stable.

3. Qualitative analysis of system (2.1)

In this section, we will consider the following system:
dx
dt
= (α − ra − β(x + y))x + δy = P(x, y),

dy
dt
= (α − β(x + y))y − δy + rax = Q(x, y).

(3.1)

Theorem 3.1. System (3.1) is uniformly bounded.

Proof. First, the field (P,Q) of system (3.1) has the following form:

P(0, y) = δy,Q(x, 0) = rax.

Obviously, P(0, y) > 0 for y > 0. On the positive x-axis, Q(x, 0) > 0 means that the direction of the
vector field is pointed from the negative semi-axis of y to its positive semi-axis.

Next, we take a straight line k1 : y −
α − δ

β
= 0 and obtain

dk1

dt
= (−βy+ ra)x = (−α+ ra+ δ)x < 0,

where α > ra+ δ. Thus, the direction of the vector field of system (3.1) on k1 is downward. Therefore,

y =
α − δ

β
is a straight line without a tangent, and the trajectory of the system (3.1) passes in a direction

shown in Figure 2.

In the mean time, we define a function k2 : x −
α − δ

β
= 0 and obtain

dk2

dt
|x= α−δβ

= (δ−ra)x+(δ−βx)y <

0, where ra > δ. We can see that the direction of the vector field of system (3.1) on k2 is oriented along
the x-axis towards the negative semi-axis (see Figure 2). Hence, we can get the conclusion of the
theorem. The proof is completed.

Figure 2. Boundedness of system (3.1).
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We define {
(α − ra − β(x + y))x + δy = 0,
(α − β(x + y))y − δy + rax = 0,

(3.2)

and the system has two equilibria: one is boundary equilibrium E0(0, 0), the other is positive

equilibrium E∗(x∗, y∗) =
(
αδ

β(ra + δ)
,

raα
β(ra + δ)

)
.

We calculate the Jacobian matrix of system (3.1):

J(E(x, y)) =
[
α − ra − 2βx − βy δ − βx
−βy + ra α − βx − 2βy − δ

]
.

Theorem 3.2. If α > δ, the boundary equilibrium E0(0, 0) is unstable.

Proof. At the point E0(0, 0), the Jacobian matrix is

J(E0(0, 0)) =
[
α − ra δ

ra α − δ

]
,

and the following eigenvalues are obtained:

λ1 =
(α − ra)(α − δ) − δra

α − δ
, λ2 = α − δ.

Obviously, λ1 > 0 and λ2 > 0 hold for α > δ. Therefore, we can obtain that E0(0, 0) is unstable for
α > δ, which shows that the sensitive and resistant bacteria cannot be completely exterminated for
α > δ.

Theorem 3.3. The equilibrium E∗(x∗, y∗) is globally asymptotically stable.

Proof. We need to determine the local asymptotical stability, and the Jacobian matrix is given as
follows:

J(E∗(x∗, y∗)) =
[
α − ra − 2βx∗ − βy∗ δ − βx∗

−βy∗ + ra α − βx∗ − 2βy∗ − δ

]
.

det(J(E∗(x∗, y∗))) =

∣∣∣∣∣∣ α − ra − 2βx∗ − βy∗ δ − βx∗

−βy∗ + ra α − βx∗ − 2βy∗ − δ

∣∣∣∣∣∣
= α2 − αδ − raα + (x∗ + y∗)(2raβ + 2δβ − αβ)
= α(δ + ra) > 0,

and

trace(J(E∗(x∗, y∗))) = (α − ra − 2βx∗ − βy∗) + (α − βx∗ − 2βy∗ − δ)
= −ra − α − δ < 0.

Consequently, E∗ is locally asymptotically stable in this case.

In the following, we construct the Dulac function V(x, y) =
1
xy

and obtain

∂(P(x, y)V(x, y))
∂x

+
∂(Q(x, y)V(x, y))

∂y
= −(
β

y
+
δ

x2 +
β

x
+

ra
y2 ) < 0,

which indicates that there is no limit cycle here. Hence, E∗ is globally asymptotically stable.
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4. The order-1 periodic solution

4.1. The existence and uniqueness of the solution

We define the impulsive set M = {(x, y) ∈ R2
+|x ≥ 0, y1 = h} and the phase set N = {(x, y) ∈ R2

+|x ≥
τh, y2 = (1 − τ)h}.

Theorem 4.1. When h < y∗, system (2.1) has a unique order-1 periodic solution.

Proof. From the impulsive set and phase set given above, we can obtain that point E∗(x∗, y∗) must be

above the sets M and N when h < y∗. If line y = h intersects the isoclines
dx
dt
= 0 and

dy
dt
= 0 at point

S 0 and S 1, the straight line y = (1 − τ)h intersects the y-axis and the isoclines
dx
dt
= 0 and

dy
dt
= 0 at

points R0, R1 and R2, respectively (see Figure 3(a)).
From the discussion in Section 3 and the vector field, we obtain that set S 0S 1 intersects trajectory

f (R1, t) going through point R1(r1, (1 − τ)h) at point S 2. According to the impulsive effect, point S 2

is mapped into R3(r3, (1 − τ)h). From the property of the vector field, we can get r1 < r3. From
Definition 2.2, point R3 is the successor of point R1 and satisfies

g(R1) = r3 − r1 > 0.

In the same way, set S 0S 1 intersects trajectory f (R2, t) going through point R2(r2, (1 − τ)h) at point
S 3. Point S 3 reaches the phase point R4(r4, (1 − τ)h). Thus, point R4 is the successor point of point R2.
Thus, we can get r2 > r4 and

g(R2) = r4 − r2 < 0.

According to Lemma 2.1, there must be a point W between R1 and R2. There exists a curve starting
from W and intersecting the set S 0S 1. Suppose the curve intersects S 0S 1 at the point S 4, where the
coordinates of the point W are denoted as (m1, (1 − τ)h). S 4 jumps to point W1, and the coordinates of
W1 are (m1, (1 − τ)h). Thus, the points W and W1 coincide on set N, and we get g(W) = 0. Referring
to Lemma 2.2, there exists an order-1 periodic solution.

Then, we will prove the uniqueness of the above solution. First, we now choose any two points T,U
in set R1R2. There are two points that must satisfy xR1 < xT < xU < xR2 . The trajectory from point T
intersects at point T 1 with set S 0S 1. In the same way, the trajectory from point U intersects set S 0S 1

at point U1 (see Figure 3(b)). Then

x(T 1) − x(T ) =
∫ h

(1−τ)h

dx
dy

dy =
∫ h

(1−τ)h

P(H1, y)
Q(x, y)

dy,

x(U1) − x(U) =
∫ h

(1−τ)h

dx
dy

dy =
∫ h

(1−τ)h

P(H2, y)
Q(x, y)

dy, (4.1)

where H1,H2 represent the horizontal coordinates of T1 and U1 respectively. These two points should
satisfy H1 < H2.

Thus, ∫ h

(1−τ)h

P(H1, y)
Q(x, y)

dy <
∫ h

(1−τ)h

P(H2, y)
Q(x, y)

dy.
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This is equivalent to x(T 1) − x(T ) < x(U1) − x(U). From the definition of successor function, we get
g(T ) = x(T1) − x(T ) = (x(T 1) + dy) − x(T ) and g(U) = x(U1) − x(U) = (x(U1) + dy) − x(U). For
xT < xU ,

g(T ) − g(U) = (x(T 1) + dy) − x(T ) − [(x(U1) + dy) − x(U)] = [x(T 1) − x(T )] − [x(U1) − x(U)] < 0,

and we have that the function g is monotonically decreasing in set R1R2. Therefore, there is only one
point W satisfying g(W) = 0, and the order-1 periodic solution is unique from Lemma 2.2.

Figure 3. When h < y∗, (a) the existence of the order-1 periodic solution. (b) The uniqueness
of the order-1 periodic solution.

4.2. Stability of the solution

To prove the stability of the order-1 periodic solution, we rewrite system (2.1) as follows:

dx
dt
= (α − ra − β(x + y))x + δy = P(x, y),

dy
dt
= (α − β(x + y))y − δy + rax = Q(x, y),

 y < h,

∆x = x(t+) − x(t−) = τh,
∆y = y(t+) − y(t−) = −τh,

}
y = h,

x(0) = x0 ≥ 0,
y(0) = y0 ≥ 0.

(4.2)

Theorem 4.2. When h < y∗, the order-1 periodic solution is orbitally asymptotically stable.

Proof. Obviously, we have already proved the existence and uniqueness of order-1 periodic solutions
in Theorem 4.1. From Figure 2 and Theorem 4.1, we can get that the order-1 periodic solution is a
convex-edge asymptotically stable type. Now, we use the Theorems 2.1 and 2.2 to prove the stability
of the order-1 periodic solution.

Since
∂(P(x, y))
∂x

+
∂(Q(x, y))
∂y

= 2α − ra − δ − 3βx − 3βy,

we cannot judge whether the above formula is positive or negative.

Then, we construct a continuously differentiable function: V(x, y) =
1
xy

. We have

∂(P(x, y)V(x, y))
∂x

+
∂(Q(x, y)V(x, y))

∂y
= −(
β

y
+
δ

x2 +
β

x
+

ra
y2 ) < 0.
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From Theorems 2.1 and 2.2, we obtain that the order-1 periodic solution is orbitally stable.

5. Numerical simulations

In this study, we formulate a mathematical model of a within-host drug resistance model with the
impulsive state feedback control. We mainly consider the effect of antibiotics on the mutual
transformation of both bacteria, and we fix the following parameters: α = 1, r = 0.1, β = 0.4, δ = 0.4,
h = 0.4, and τ = 0.6. Thus, we have the set M = {(x, y) ∈ R2

+|x ≥ 0, y1 = 0.4} and set
N = {(x, y) ∈ R2

+|x ≥ 0.24, y2 = 0.16}. We obtain the positive equilibrium E∗(x∗, y∗) = (2.439, 0.061)
for a = 0.1, which is simulated in Figure 4. With the increase of antibiotic concentration caused by
the drug treatment, we get the equilibrium points E∗(x∗, y∗) = (2.222, 0.277) and E∗(x∗, y∗)
= (1.818, 0.682) for a = 0.5 and a = 1.5, respectively, as presented in Figures 5 and 6.

At the beginning of antibiotic infusion, the concentrations of both susceptible and drug-resistant
bacteria increase, and then the concentration of susceptible bacteria grows slowly and eventually
stabilizes. At this time, the rate of conversion of susceptible to drug-resistant bacteria gradually
decreases compared to the conversion rate of drug-resistant to susceptible bacteria (which means that
rax is gradually smaller than δy), resulting in a decreasing trend in the concentration of drug-resistant
bacteria, which finally tends to a stable state (Figure 4). From the comparison of Figures 4–6, it is
concluded that when a is small enough, the concentration of susceptible bacteria is the highest, and
the concentration of drug-resistant bacteria decreases to a very small concentration after increasing,
which is one of the most desirable situations. When a increases to 0.5, there is a decrease in the
concentration of the drug-resistant bacteria, but the concentration of drug-resistant bacteria is still
within the critical threshold value. However, as the concentration of antibiotics increases (see
Figure 6), the concentration of drug-resistant bacteria increases sharply and then stops decreasing, and
the concentration exceeds the threshold range that the body can tolerate. This means that the infusion
of excessive antibiotics will accelerate the growth of drug-resistant bacteria in the body and lead to an
aggravation of the disease. In addition, we can also obtain that prolonged administration of the same
drug can lead to an increase in antibiotics by comparing the equilibrium points at different drug
concentrations, which can lead to a decrease in susceptible bacteria and an increase in
drug-resistant bacteria.

As can be seen in Figure 6, continuous infusion of antibiotics into the body will result in very
high concentrations of drug-resistant bacteria that exceed the critical threshold value. As a result,
the model fails to effectively treat the disease if only continuous infusion of antibiotics is considered.
Thus, it is necessary to implement the impulsive infusion to control the concentration of drug-resistant
bacteria below the critical threshold value. Theorem 4.1 shows that an antibiotic delivery strategy is
adopted when the concentration of drug-resistant bacteria exceeds the critical threshold value, followed
by an oscillation of the level of drug-resistant bacteria in the host in an interval below the threshold
and a stabilization of the concentration of sensitive and drug-resistant bacteria, which is simulated in
Figure 7.
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Figure 4. Time series and phase portrait of system (3.1) with α = 1, r = 0.1, β = 0.4, δ = 0.4
and a = 0.1.

Figure 5. Time series and phase portrait of system (3.1) with α = 1, r = 0.1, β = 0.4, δ = 0.4
and a = 0.5.

Figure 6. Time series and phase portrait of system (3.1) with α = 1, r = 0.1, β = 0.4, δ = 0.4
and a = 1.5.

Figure 7. Time series and phase portrait of system (2.1) with α = 1, r = 0.1, β = 0.4, δ =
0.4, τ = 0.6, h = 0.4 and a = 1.5, E∗(1.818, 0.628), when h < y∗.
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6. Conclusions

The reasonable use of antibiotics can effectively cure the disease so that bacteria are quickly cleared
away. However, excessive or unreasonable use can lead to the conversion of susceptible bacteria into
drug-resistant bacteria, which will not alleviate the pain of the patient but make it more severe. The
long-term threat of disease exacerbated by antibiotics has reminded people to use them scientifically
and reasonably. Thus, it is crucial to identify the effective methods for reducing the conversion of
susceptible to resistant bacteria in the treatment of disease.

The above numerical simulations are given to compare the effects of antibiotic infusion with
continuous and impulsive drug treatment. It is shown that the concentration of resistant bacteria of the
model with impulsive feedback control will tend to an order-1 periodic solution. When the
concentration of drug-resistant bacteria reaches a critical threshold, the concentration of drug-resistant
bacteria can be controlled between 0.1 and 0.4 by means of drug infusion, so that the dynamic balance
of bacterial populations in the host can be maintained, and disease progression can be
effectively stopped.
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22. J. N. A. Tetteh, F. Matthäus, E. A. Hernandez-Vargas, A survey of within-host and between-
hosts modelling for antibiotic resistance, Biosystems, 196 (2020), 104182–104197. https: //doi.org
/10.1016 /j.biosystems.2020.104182

23. J. N. A. Tetteh, S. Olaru, C. Parra-Rojas, Lyapunov-based switching to mitigate
antimicrobial resistance, IFAC-PapersOnLine, 53 (2020), 16049–16054. https://doi. org/ 10.1016/
j.ifacol.2020.12.416

24. M. Sun, Y. Liu, S. Liu, Z. Hu, L. Chen, A novel method for analyzing the stability of
periodic solution of impulsive state feedback model, Appl. Math. Comput., 273 (2016), 425–434.
https://doi.org/10.1016/j.amc.2015.09.093

25. L. Chen, X. Liang, Y. Pei, The periodic solutions of the impulsive state
feedback dynamical system, Commun. Math. Biol. Neurosci., (2018), 14–29.
https://doi.org/doi.org/10.28919/cmbn/3754

26. X. Zhang, C. Li, H. Li, Finite-time stabilization of nonlinear systems via impulsive
control with state-dependent delay, J. Franklin Inst., 359 (2022), 1196–1214.
https://doi.org/10.1016/j.jfranklin.2021.11.013

27. S. Gao, Z. Teng, D. Xie, Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos
Solitons Fractals, 40 (2009), 1004–1011. https://doi.org/10.1016/j.chaos.2007.08.056

28. S. Q. Zhang, X. Z. Meng, T. Feng, T. H. Zhang, Dynamics analysis and numerical simulations of a
stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal. Hybrid
Syst., 26 (2017), 19–37. https://doi.org/10.1016/j.nahs.2017.04.003

29. Z. Zhao, F. Tao, Q. Li, Dynamic analysis of conversion from a drug-sensitivity
strain to a drug-resistant strain, Int. J. Biomath., 11 (2018), 1850113–1850127.
https://doi.org/10.1142/S1793524518501139

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2219–2231.

http://dx.doi.org/https://doi.org/10.2147/DDDT.S164316
http://dx.doi.org/https://doi.org/10.1142/S1793524521500431
http://dx.doi.org/https: //doi.org /10.1016 /j.biosystems.2020.104182
http://dx.doi.org/https: //doi.org /10.1016 /j.biosystems.2020.104182
http://dx.doi.org/https://doi. org/ 10.1016/ j.ifacol.2020.12.416
http://dx.doi.org/https://doi. org/ 10.1016/ j.ifacol.2020.12.416
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.09.093
http://dx.doi.org/https://doi.org/doi.org/10.28919/cmbn/3754
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2021.11.013
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2007.08.056
http://dx.doi.org/https://doi.org/10.1016/j.nahs.2017.04.003
http://dx.doi.org/https://doi.org/10.1142/S1793524518501139
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model description
	Qualitative analysis of system (2.1)
	The order-1 periodic solution
	The existence and uniqueness of the solution
	Stability of the solution

	Numerical simulations
	Conclusions

