Research article

Adaptive predefined-time robust control for nonlinear time-delay systems with different power Hamiltonian functions

  • Received: 24 July 2023 Revised: 14 September 2023 Accepted: 27 September 2023 Published: 13 October 2023
  • MSC : 93B52, 93C10

  • The article studies $ H_\infty $ control as well as adaptive robust control issues on the predefined time of nonlinear time-delay systems with different power Hamiltonian functions. First, for such Hamiltonian systems with external disturbance and delay phenomenon, we construct the appropriate Lyapunov function and Hamiltonian function of different powers. Then, a predefined-time $ H_\infty $ control approach is presented to stabilize the systems within a predefined time. Furthermore, when considering nonlinear Hamiltonian system with unidentified disturbance, parameter uncertainty and delay, we devise a predefined-time adaptive robust strategy to ensure that the systems reach equilibrium within one predefined time and have better resistance to disturbance and uncertainty. Finally, the validity of the results is verified with a river pollution control system example.

    Citation: Shutong Liu, Renming Yang. Adaptive predefined-time robust control for nonlinear time-delay systems with different power Hamiltonian functions[J]. AIMS Mathematics, 2023, 8(12): 28153-28175. doi: 10.3934/math.20231441

    Related Papers:

  • The article studies $ H_\infty $ control as well as adaptive robust control issues on the predefined time of nonlinear time-delay systems with different power Hamiltonian functions. First, for such Hamiltonian systems with external disturbance and delay phenomenon, we construct the appropriate Lyapunov function and Hamiltonian function of different powers. Then, a predefined-time $ H_\infty $ control approach is presented to stabilize the systems within a predefined time. Furthermore, when considering nonlinear Hamiltonian system with unidentified disturbance, parameter uncertainty and delay, we devise a predefined-time adaptive robust strategy to ensure that the systems reach equilibrium within one predefined time and have better resistance to disturbance and uncertainty. Finally, the validity of the results is verified with a river pollution control system example.



    加载中


    [1] Y. Liu, J. Xu, J. Lu, W. Gui, Stability of stochastic time-delay systems involving delayed impulses, Automatica, 152 (2023), 110955. https://doi.org/10.1016/j.automatica.2023.110955 doi: 10.1016/j.automatica.2023.110955
    [2] Y. Liu, X. Chen, J. Lu, W. Gui, Stability of time-delay systems with delayed impulses: Average impulsive estimation approach, SIAM J. Control Optim., 61 (2023), 620–646. https://doi.org/10.1137/22M1476332 doi: 10.1137/22M1476332
    [3] J. Huang, L. Yang, H. Trinh, Robust control for incremental quadratic constrained nonlinear time-delay systems subject to actuator saturation, Appl. Math. Comput., 405 (2021), 126271. https://doi.org/10.1016/j.amc.2021.126271 doi: 10.1016/j.amc.2021.126271
    [4] Z. G. Liu, L. Xue, Z. Y. Sun, A new robust adaptive tracking strategy to uncertain time-delay nonlinear systems with a general form, Automatica, 146 (2022), 110560. https://doi.org/10.1016/j.automatica.2022.110560 doi: 10.1016/j.automatica.2022.110560
    [5] G. Naami, M. Ouahi, B. A. Sadek, F. Tadeo, A. Rabhi, Delay-dependent $ H_\infty $ dynamic observers for non-linear systems with multiple time-varying delays, T. I. Meas. Control, 44 (2022), 2998–3015. https://doi.org/10.1177/01423312221093169 doi: 10.1177/01423312221093169
    [6] H. Min, S. Xu, B. Zhang, Q. Ma, Globally adaptive control for stochastic nonlinear time-delay systems with perturbations and its application, Automatica, 102 (2019), 105–110. https://doi.org/10.1016/j.automatica.2019.01.004 doi: 10.1016/j.automatica.2019.01.004
    [7] Y. Liu, J. Wang, L. Gomes, W. Sun, Adaptive robust control for networked strict-feedback nonlinear systems with state and input quantization, Electronics, 10 (2021), 2783. https://doi.org/10.3390/electronics10222783 doi: 10.3390/electronics10222783
    [8] T. Xu, Y. Wu, H. Fang, F. Wan, Adaptive finite-time tracking control for full state constrained nonlinear systems with time-varying delays and input saturation, T. I. Meas. Control, 44 (2022), 1824–1835. https://doi.org/10.1177/01423312211065851 doi: 10.1177/01423312211065851
    [9] R. Yang, G. Zhang, L. Sun, Observer-based finite-time robust control of nonlinear time-delay systems via Hamiltonian function method, Int. J. Control, 94 (2021), 3533–3550. https://doi.org/10.1080/00207179.2020.1774657 doi: 10.1080/00207179.2020.1774657
    [10] R. Yang, F. Zang, L. Sun, P. Zhou, B. Zhang, Finite‐time adaptive robust control of nonlinear time‐delay uncertain systems with disturbance, Int. J. Robust Nonlin., 29 (2019), 919–934. https://doi.org/10.1002/rnc.4415 doi: 10.1002/rnc.4415
    [11] C. Hua, X. Guan, P. Shi, Robust output feedback tracking control for time-delay nonlinear systems using neural network, IEEE T. Neural Networ., 18 (2007), 495–505. https://doi.org/10.1109/TNN.2006.888368 doi: 10.1109/TNN.2006.888368
    [12] Y. Yin, P. Shi, F. Liu, Gain-scheduled robust fault detection on time-delay stochastic nonlinear systems, IEEE T. Ind. Electron., 58 (2011), 4908–4916. https://doi.org/10.1109/TIE.2010.2103537 doi: 10.1109/TIE.2010.2103537
    [13] R. Yang, Y. Wang, Finite-time stability analysis and $ H_\infty $ control for a class of nonlinear time-delay Hamiltonian systems, Automatica, 49 (2013), 390–401. https://doi.org/10.1016/j.automatica.2012.11.034 doi: 10.1016/j.automatica.2012.11.034
    [14] R. Yang, R. Guo, Adaptive finite-time robust control of nonlinear delay hamiltonian systems via Lyapunov-Krasovskii method, Asian J. Control, 20 (2018), 332–342. https://doi.org/10.1002/asjc.1556 doi: 10.1002/asjc.1556
    [15] J. D. Sánchez-Torres, D. Gómez-Gutiérrez, E. López, A. G. Loukianov, A class of predefined-time stable dynamical systems, IMA J. Math. Control I., 35 (2018), i1–i29. https://doi.org/10.1093/imamci/dnx004 doi: 10.1093/imamci/dnx004
    [16] E. Jiménez-Rodríguez, J. D. Sánchez-Torres, A. G. Loukianov, On optimal predefined-time stabilization, Int. J. Robust Nonlin., 27 (2017), 3620–3642. https://doi.org/10.1002/rnc.3757 doi: 10.1002/rnc.3757
    [17] Y. Song, Y. Wang, J. Holloway, M. Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243–251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008
    [18] B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback, Automatica, 121 (2020), 109191. https://doi.org/10.1016/j.automatica.2020.109191 doi: 10.1016/j.automatica.2020.109191
    [19] B. Zhou, Y. Shi, Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback, IEEE T. Automat. Contr., 66 (2021), 6123–6130. https://doi.org/10.1109/TAC.2021.3061645 doi: 10.1109/TAC.2021.3061645
    [20] E. Jiménez-Rodríguez, J. D. Sánchez-Torres, A. G. Loukianov, Predefined-time backstepping control for tracking a class of mechanical systems, IFAC-PapersOnLine, 50 (2017), 1680–1685. https://doi.org/10.1016/j.ifacol.2017.08.492 doi: 10.1016/j.ifacol.2017.08.492
    [21] J. Yu, P. Shi, J. Liu, C. Lin, Neuroadaptive finite-time control for nonlinear mimo systems with input constraint, IEEE T. Cybernetics, 52 (2022), 6676–6683. https://doi.org/10.1109/TCYB.2020.3032530 doi: 10.1109/TCYB.2020.3032530
    [22] B. Zhou, K. Zhang, A linear time-varying inequality approach for prescribed time stability and stabilization, IEEE T. Cybernetics, 53 (2023), 1880–1889. https://doi.org/10.1109/TCYB.2022.3164658 doi: 10.1109/TCYB.2022.3164658
    [23] K. Li, C. Hua, X. You, C. K. Ahn, Output feedback predefined-time bipartite consensus control for high-order nonlinear multiagent systems, IEEE T. Circuits I, 68 (2021), 3069–3078. https://doi.org/10.1109/TCSI.2021.3071974 doi: 10.1109/TCSI.2021.3071974
    [24] Y. Wang, Y. Song, D. J. Hill, M. Krstic, Prescribed-time consensus and containment control of networked multiagent systems, IEEE T. Cybernetics, 49 (2018), 1138–1147. https://doi.org/10.1109/TCYB.2017.2788874 doi: 10.1109/TCYB.2017.2788874
    [25] E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, A. G. Loukianov, A Lyapunov-like characterization of predefined-time stability, IEEE T. Automat. Contr., 65 (2020), 4922–4927. https://doi.org/10.1109/TAC.2020.2967555 doi: 10.1109/TAC.2020.2967555
    [26] P. Krishnamurthy, F. Khorrami, M. Krstic, A dynamic high-gain design for prescribed-time regulation of nonlinear systems, Automatica, 115 (2020), 108860. https://doi.org/10.1016/j.automatica.2020.108860 doi: 10.1016/j.automatica.2020.108860
    [27] C. Hua, P. Ning, K. Li, Adaptive Prescribed-Time Control for a Class of Uncertain Nonlinear Systems, IEEE T. Automat. Contr., 67 (2022), 6159–6166. https://doi.org/10.1109/TAC.2021.3130883 doi: 10.1109/TAC.2021.3130883
    [28] W. Li, M. Krstic, Stochastic nonlinear prescribed-time stabilization and inverse optimality, IEEE T. Automat. Contr., 67 (2022), 1179–1193. https://doi.org/10.1109/TAC.2021.3061646 doi: 10.1109/TAC.2021.3061646
    [29] C. Hua, H. Li, K. Li, P. Ning, Adaptive prescribed-time control of time-delay nonlinear systems via a double time-varying Gain approach, IEEE T. Cybernetics, 53 (2023), 5290–5298. https://doi.org/10.1109/TCYB.2022.3192250 doi: 10.1109/TCYB.2022.3192250
    [30] C. Ding, C. Shi, Y. Chen, Nonsingular prescribed-time stabilization of a class of uncertain nonlinear systems:A novel coordinate mapping method, Int. J. Robust Nonlin., 30 (2020), 3566–3581. https://doi.org/10.1002/rnc.4949 doi: 10.1002/rnc.4949
    [31] D. Gómez-Gutiérrez, On the design of nonautonomous fixed‐time controllers with a predefined upper bound of the settling time, Int. J. Robust Nonlin., 30 (2020), 3871–3885. https://doi.org/10.1002/rnc.4976 doi: 10.1002/rnc.4976
    [32] P. Krishnamurthy, F. Khorrami, M. Krstic, Robust adaptive prescribed-time stabilization via output feedback for uncertain nonlinear strict-feedback-like systems, Eur. J. Control, 55 (2020), 14–23. https://doi.org/10.1016/j.ejcon.2019.09.005 doi: 10.1016/j.ejcon.2019.09.005
    [33] J. D. Sánchez-Torres, E. N. Sanchez, A. G. Loukianov, Predefined-time stability of dynamical systems with sliding modes, In: 2015 American Control Conference (ACC), 5842–5846. 10.1109/ACC.2015.7172255
    [34] Y. Wang, The generalized Hamiltonian control systems theory-implementation control and application, Science Press, 2007.
    [35] Y. Wang, C. Li, D. Cheng, Generalized Hamiltonian realization of time-invariant nonlinear systems, Automatica, 39 (2003), 1437–1443. https://doi.org/10.1016/S0005-1098(03)00132-8 doi: 10.1016/S0005-1098(03)00132-8
    [36] R. Yang, Y. Wang, Stability for a class of nonlinear time-delay systems via Hamiltonian functional method, Sci. China Inf. Sci., 55 (2012), 1218–1228. https://doi.org/10.1007/s11432-012-4573-z doi: 10.1007/s11432-012-4573-z
    [37] X. Shi, R. Yang, J. Cui, H. Zhang, H. Yang, Observer-based finite time robust stabilization of mechanical arm systems, In: 2021 33rd Chinese Control and Decision Conference (CCDC), 3061–3066. https://doi.org/10.1109/CCDC52312.2021.9602808
    [38] R. Yang, L. Sun, G. Zhang, Q. Zhang, Finite-time stability and stabilization of nonlinear singular time-delay systems via Hamiltonian method, J. Franklin I., 356 (2019), 5961–5992. https://doi.org/10.1016/j.jfranklin.2019.04.033 doi: 10.1016/j.jfranklin.2019.04.033
    [39] X. Liao, G. Chen, E. Sanchez, Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach, Neural Networks, 15 (2002), 855–866. https://doi.org/10.1016/S0893-6080(02)00041-2 doi: 10.1016/S0893-6080(02)00041-2
    [40] R. Yang, G. Zhang, L. Sun, Control and application of complex nonlinear time-delay systems, 2021.
    [41] A. Papachristodoulou, Analysis of nonlinear time-delay systems using the sum of squares decomposition, In: Proceedings of the 2004 American Control Conference, Boston, 2004, 4153–4158. https://doi.org/10.23919/ACC.2004.1383959
    [42] S. Boyd, L. G. El, E. Ferron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Society for industrial and applied mathematics, 1994.
    [43] T. Shen, R. Ortega, Q. Lu, S. Mei, K. Tamura, Adaptive $ L_{2} $ disturbance attenuation of Hamiltonian systems with parametric perturbation and application to power systems, Asian J. Control, 5 (2003), 143–152. https://doi.org/10.1111/j.1934-6093.2003.tb00105.x doi: 10.1111/j.1934-6093.2003.tb00105.x
    [44] Y. Wang, G. Feng, D. Cheng, Y. Liu, Adaptive $ L_{2} $ disturbance attenuation control of multi-machine power systems with SMES units, Automatica, 42 (2006), 1121–1132. https://doi.org/10.1016/j.automatica.2006.03.014 doi: 10.1016/j.automatica.2006.03.014
    [45] W. Sun, B. Fu, Adaptive control of time-varying uncertain nonlinear systems with input delay: A Hamiltonian approach, IET Control Theory A., 10 (2016), 1844–1858. https://doi.org/10.1049/iet-cta.2015.1165 doi: 10.1049/iet-cta.2015.1165
    [46] C. S. Lee, G. Leitmann, Continuous feedback guaranteeing uniform ultimate boundedness for uncertain linear delay systems: An application to river pollution control, Comput. Math. Appl., 16 (1988), 929–938. https://doi.org/10.1016/0898-1221(88)90203-9 doi: 10.1016/0898-1221(88)90203-9
    [47] F. Zheng, Q. G. Wang, T. H. Lee, Adaptive robust control of uncertain time delay systems, Automatica, 41 (2005), 1375–1383. https://doi.org/10.1016/j.automatica.2005.03.014 doi: 10.1016/j.automatica.2005.03.014
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1133) PDF downloads(301) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog