
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(12): 28153–28175.
DOI: 10.3934/math.20231441
Received: 24 July 2023
Revised: 14 September 2023
Accepted: 27 September 2023
Published: 13 October 2023

Research article

Adaptive predefined-time robust control for nonlinear time-delay systems
with different power Hamiltonian functions

Shutong Liu and Renming Yang*

Department of Information Science and Electrical Engineering, Shandong Jiaotong University,
Jinan 250357, China

* Correspondence: Email: renmingyang0222@163.com.

Abstract: The article studies H∞ control as well as adaptive robust control issues on the predefined
time of nonlinear time-delay systems with different power Hamiltonian functions. First, for such
Hamiltonian systems with external disturbance and delay phenomenon, we construct the appropriate
Lyapunov function and Hamiltonian function of different powers. Then, a predefined-time H∞ control
approach is presented to stabilize the systems within a predefined time. Furthermore, when considering
nonlinear Hamiltonian system with unidentified disturbance, parameter uncertainty and delay, we
devise a predefined-time adaptive robust strategy to ensure that the systems reach equilibrium within
one predefined time and have better resistance to disturbance and uncertainty. Finally, the validity of
the results is verified with a river pollution control system example.
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1. Introduction

Actual nonlinear systems are subject to a wide variety of unknown disturbances, parameter
uncertainties and delay phenomena [1, 2]. Robust control and adaptive control methods have been
proven successful at addressing these issues [3–14]. For nonlinear time-delay systems (NTDSs) with
variable powers, [4] solved the adaptive robust tracking control problem. Taking into account the
disturbance and time-varying delay of nonlinear Lipschitz systems, [5] designed a class of
delay-dependent H∞ dynamic observers. The literature [6] investigated the global adaptive state
feedback control issue of stochastic NTDSs with unknown disturbances and time-dependent delays.
A new adaptive tracking controller with minimum learning parameters was designed to solve an
adaptive tracking issue in finite time caused by full-state constrained NTDSs under input
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saturation [8]. The Lyapunov-Krasovskii functional method was applied to investigate the adaptive
robust control problem on finite time of NTDSs subject to uncertainty and disturbances [10]. For
NTDSs with the triangular form, the robust output tracking control problem is solved by neural
network [11]. For stochastic NTDSs with partially known jump rates, [12] investigated the continuous
gain-scheduled robust fault detection issue. The above results developed several good infinite-time
and finite-time methods. Although the finite-time control scheme presented above achieves faster
convergence and greater robustness than the infinite-time scheme, its convergence time is determined
by giving the initial state. Namely, its convergence time has an uncertain upper bound.

As a result, a predefined-time control method is presented. As is well known, a closed-loop
system (CLS) operated under a predefined-time strategy will maintain its convergence time
uncorrelated with its initial state, and the upper bound of its convergence time is set beforehand,
which improves the control accuracy of the CLS and compensates for the limitations of the finite-time
control scheme. Consequently, the predefined-time control approach has received considerable focus
from scholars, and some excellent results have been produced [15–33] on the mechanical system,
time-varying system and uncertain system. Meanwhile, many effective predefined-time control
methods have also been proposed like optimal control [16], time-varying feedback [17–19],
backstepping [20], high-gain approach [26] and so on. Among them, the Lyapunov-like theorem
proposed in [25] ensured that such dynamic systems reached stability in a predefined time and also
constituted a framework based on predefined-time stability analysis. By introducing time
transformations with terminal time terms, [26] investigated the stability in a predefined time of the
nonlinear uncertain system. With a new scale-free backstepping method, [28] solved the
predefined-time mean-square stability as well as the inverse optimality issues of nonlinear stochastic
systems. By designing a double time-varying gain, [29] presented a new predefined-time adaptive
control method and solved the predefined-time control problems involved in triangular NTDSs having
unknown parameters. Even so, there are few predefined-time control results of NTDSs except [29].
Particularly, as far as the authors know, no predefined-time control result has been published
regarding the NTDSs with external disturbances and parameter uncertainty simultaneously, which
inspired the present work.

As is well known, it is a very difficult task to study nonlinear systems due to lack of an effective
research tool. Recently, the Hamiltonian method, as an important nonlinear research tool, has received
much attention in the academic community and has been used to solve succesfully a large number of
nonlinear problems. In fact, one of the advantages of using the Hamiltonian function method is that
the Hamiltonian function in a Hamiltonian system can be chosen as a candidate Lyapunov function,
which effectively overcomes the difficulty of constructing Lyapunov functions. Moreover, several
well-established techniques for the design of Hamiltonian systems are given in the literature [34–36].
Among them, the authors also develop many strategies to obtain their Hamiltonian forms for given
nonlinear systems. These methods are presented so that one can easily convert the system under study
into its Hamiltonian version. However, the fact that the powers of the Hamiltonian functions in the
literature [9, 14, 37, 38] are the same for each state implies that the results have greater limitations.

In the paper, we investigate a general class of NTDSs with uncertain parameter and external
disturbance, and propose several predefined-time H∞ and adaptive robust control results by applying
the Hamiltonian function method with different powers. Here are some of the main contributions of
this paper: (1) Contrary to the available results of infinite-time control as well as finite-time control,

AIMS Mathematics Volume 8, Issue 12, 28153–28175.



28155

our predefined-time controller is capable of ensuring the CLS converges to zero within any given
predefined constant number, and its convergence time cannot be affected by the initial state, making
the system behavior better determined. (2) In contrast with the previous NTDS control results using
the Hamiltonian approach (with the same power Hamiltonian form), this paper develops several more
general results with different power Hamiltonian function forms, implying that these results have
broader applications. (3) Compared with the recent predefined-time control result on the delay system
in [29] (considering only the triangular form and unknown parameter), this paper examines a general
class of NTDSs subject to uncertainties and disturbances and designs its predefined-time H∞
controller and adaptive robust controller by applying different power Hamiltonian forms. As
expected, the results are more in line with reality.

The remaining sections of the paper are listed below. In Section 2, we present several preliminaries.
Section 3 gives our main findings, Section 4 illustrates a case of river pollution that supports our new
result and Section 5 is the conclusion.

2. Preliminaries

Consider the system
ẋ = f (t, x, x(t − h), ρ), (2.1)

where f : R+ × Rn × Rn → Rn indicates a nonlinear function, x ∈ Rn represents the system state,
h > 0 is the constant delay, ρ denotes an uncertain constant parameter with appropriate dimension,
and t indicates time variable defined on [t0,∞), where t0 ∈ R+ ∪ {0}, x0 = x (t0) is the initial condition.

In some practical cases, it would be desirable if the system (2.1) could achieve its original point in
a given time Ta, where Ta is a constant and can be defined beforehand.

Assume that M(⊂ Rn) is a non-empty set. If any solution x(t, x0) reaches M in t ≤ t0 + Ta, then the
predefined time Ta gets defined.

Lemma 2.1. Suppose that V(t, xt) := V is a continuous radial unbounded function with V(t, 0) = 0
such that

V̇ ≤ −
1

qTa
exp (Vq) V1−q, x ∈ M, (2.2)

holds, then M is predefined-time attractive, where xt is a delay function segment defined as xt :=
x(t + ϱ), ϱ ∈ [−h, 0] with h > 0, the constant 0 < q ≤ 1 and Ta is the predefined time.
Proof. From Eq (2.2), it is easy to obtain:

V(t, xt) ≤

ln  1
t−t0
Ta
+ exp

(
−(Vx0)q)


1
q

. (2.3)

To give the upper boundary of t, using V(t, 0) = 0, we can obtain

t ≤ t0 + Ta
[
1 − exp

(
−(Vx0)

q)] , ∀x0 ∈ R
n, (2.4)

where Vx0 denotes the initial value of V . From Eq (2.4), and 0 < exp
(
−(Vx0)

q) ≤ 1, we have

t ≤ t0 + Ta, ∀x0 ∈ R
n, (2.5)

implying Ta is the predefined time. Therefore, it has been proved.
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Lemma 2.2. [39] For real matrices 𭟋a, 𭟋b and a positive real number τ, the following equation holds:

𭟋T
a𭟋b + 𭟋

T
b𭟋a ⩽ τ𭟋

T
a𭟋a + τ

−1𭟋T
b𭟋b. (2.6)

Lemma 2.3. [35] When a scalar function g(x) has continuous partial derivatives of order n and g(0) =
0 (x ∈ Rn), then g(x) may be characterized as g(x) = l1(x)x1 + · · · + ln(x)xn with li(x)(i = 1, 2, · · · , n)
also being scalar functions.

Assuming k(x) (∈ Rn) is a smooth function and k(0) = 0, then k(x) := M(x)x =
l11(x) l12(x) · · · l1n(x)
l21(x) l22(x) · · · l2n(x)
...

...
...

...

ln1(x) ln2(x) · · · lnn(x)




x1

x2

· · ·

xn

 . (2.7)

Lemma 2.4. [13] For any given real number d ≥ 1, the inequality holds:

n
d−1

d

 n∑
i=1

|xi|


1
d

≥

n∑
i=1

|xi|
1
d ≥

 n∑
i=1

|xi|


1
d

. (2.8)

3. Main results

3.1. Robust stabilization result

Consider the following NTDS

ẋ = [J(x) − R(x)]∇xH(x) + T (x)∇x̃H(x̃) + g1(x)u + g2(x)ω, (3.1)

where the state vector is x(t)(∈ Ω), Ω represents the bounded convex neighborhood of the zero point
inside the space Rn, inverse symmetric structure matrix J(x)(∈ Rn×n) and positive definite symmetric
matrix R(x)(∈ Rn×n) are given, x̃ := x(t − h), Hamiltonian function H(x) reaches its minimum when
x = 0 that is H(0) = 0, the gradient vector of H(x) is denoted by ∇T

x H(x), T (x) ∈ Rn×n with T (0) = 0,
g1(x) and g2(x) are the weighted matrices, u represents system input, ω denotes outside disturbance,
and φ(η) denotes a vector-valued initial value function. Moreover, assume that g1(x) has full column
rank.

To present several predefined-time control results on the Hamiltonian system (3.1), we assume that

H(x) =
n∑

i=1

(
x2

i

) αi
2αi−1 (αi > 1, i = 1, · · · , n) (3.2)

and y = gT
1 (x)∇xH(x) is the system output signal.

Remark 3.1. Note that the Hamiltonian function of the present paper has different powers, which is
different from the existing results on the Hamiltonian system [9, 14, 37, 38]. It should be mentioned as
well that we presume the Hamiltonian function takes the form (3.2) so as to get certain predefined-time
control outcomes on the Hamiltonian system (3.1). Obviously, a real system cannot satisfy the form.
For a specific system, we have the following methods to develop its Hamiltonian form: the orthogonal
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decomposition method [40], Hamiltonian functional method [40], the energy shaping approach [40],
the vector field decomposition method [41] and so on. In this section, we only present a theory result.
Once the theory result is obtained, then one can design a suitable controller and apply the energy
shaping approach to convert the general form to the form (3.2). Please refer to Section 4 for more
details.

Assumption 3.1. The disturbance ω satisfies

Λ =

{
ω ∈ Rq : µ2

∫ +∞

0
ωT (t)ω(t)dt ≤ 1

}
, (3.3)

where µ > 0 is a given positive constant.
For the purpose of analysis, the set Ω is selected in the following form:

Ω :=
{
x : αT

j x ⩽ 1, j = 1, 2, · · · , n
}
, (3.4)

where α j( j = 1, 2, · · · , n) are known constant vectors, which describe n edges of Ω.
We begin by defining the predefined-time H∞ stabilization issue.
The predefined-time H∞ stabilization is to: Design a controller u = a(x) so that the CLS is stable

for a predefined time when ω disappears. Meanwhile, when ω ∈ Λ is not zero, the zero-state
response (φ(η) = 0, η ∈ [−h, 0]) meets∫ t

0
∥ z(s) ∥2 ds ≤ γ2

∫ t

0
∥ ω(s) ∥2 ds, 0 < t < ∞, (3.5)

where positive constant γ represents the disturbance suppression level, while z denotes the penalty
signal described by

z = h(x)y = h(x)g1
T(x)∇xH(x), (3.6)

with the weighted matrix h(x) having the appropriate dimension.
Now, the main results of our study are presented.

Theorem 3.1. Considering the system (3.1) under Assumption 3.1, for Ta > 0 and γ > 0, if
(1) constant matrices L < 0, P > 0 and constant numbers ϵ > 0, 0 < r ≤ γ2 exist, the following
inequalities hold:

−2R(x) + ϵ−1In + r−1g2(x)g2
T(x) −

1
γ2 g1(x)g1

T(x) ≤ L, (3.7)

2∇x
TH(x)∇xH(x)P − ϵT T(x)T (x) ≥ 0, (3.8)

(2) real numbers s > 0 and µ > 0 exist and 2s − δγ
2

2µ2 −sαT
j

−sα j In

 ⩾ 0, j = 1, 2, · · · , n, (3.9)

then a predefined-time H∞ controller of the NTDS (3.1) could be constructed as follows:

g1(x)u = −
1
σTa
Φ(x) − ∇xH(x)∇x̃

TH(x̃)P∇x̃H(x̃) + g1(x)v, (3.10)
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v = −
1
2

[hT(x)h(x) +
1
γ2 Im]g1

T(x)∇xH(x), (3.11)

where δ := max{c
2αmin−2
2αmin−1 , c

2αmax−2
2αmax−1 } with c := max {∥x∥ : x ∈ Ω}, σ := W

1
αmax
− 1
αmin with H(x) ≤ W when

x ∈ Ω, αmin represents the minimum value of αi, αmax represents the maximum value of αi, and Φ(x) is
the predefined-time stabilizing function that follows

Φ(x) = 2
1−3αmin
αmin
αmin(2αmax − 1)2

α2
max(αmin − 1)

exp[(2H(x))1− 1
αmin ]∇xH(x). (3.12)

Proof. To prove the system (3.1) is a predefined-time H∞ stabilization, we first show (3.5) holds
for ω , 0, and then prove its stability in a predefined time when ω disappears.

The Lyapunov function is constructed in the following form:

V(x) = 2H(x). (3.13)

Based on Lemma 2.2, one can derive

2∇T
x H(x)g2(x)ω ≤ rωTω + r−1∇T

x H(x)g2(x)gT
2 (x)∇xH(x).

Computing the derivative of V(x) and using ∇x
TH(x)J(x)∇xH(x) = 0, one can obtain

V̇(x) ≤ − 2∇T
x H(x)R(x)∇xH(x) + 2∇T

x H(x)T (x)∇x̃H(x̃) + 2∇T
x H(x)g1(x)u + 2∇T

x H(x)g2(x)ω
≤ − 2∇T

x H(x)R(x)∇xH(x) + 2∇T
x H(x)T (x)∇x̃H(x̃) + 2∇T

x H(x)g1(x)u + rωTω

+ r−1∇T
x H(x)g2(x)gT

2 (x)∇xH(x)
≤∇x

TH(x)[−2R(x) + r−1g2(x)gT
2 (x) + ϵ−1In]∇xH(x) + ∇T

x̃ H(x̃)[−2∇T
x H(x)∇xH(x)P

+ ϵT T(x)T (x)]∇x̃H(x̃) − 2∇T
x H(x)

1
σTa
Φ(x) + 2∇T

x H(x)g1(x)v + r ∥ ω ∥2

≤∇T
x H(x)[−2R(x) + ϵ−1In + r−1g2(x)gT

2 (x) −
1
γ2 g1(x)gT

1 (x)]∇xH(x)

+ ∇T
x̃ H(x̃)[−2∇T

x H(x)∇xH(x)P + ϵT T(x)T (x)]∇x̃H(x̃) − 2∇T
x H(x)

1
σTa
Φ(x)

− ∥ z ∥2 +r ∥ ω ∥2

≤ −
2

1−2αmin
αmin

σTa

αmin(2αmax − 1)2

α2
max(αmin − 1)

exp[(2H(x))1− 1
αmin ]∇T

x H(x)∇xH(x)− ∥ z ∥2 +r ∥ ω ∥2 .

(3.14)

Noting that 2αi
2αi−1 =

1
1− 1

2αi

is a decreasing function, we have

∇x
TH(x)∇xH(x) =

n∑
i=1

(
2αi

2αi − 1

)2 (
x2

i

) 1
2αi−1
≥

(
2αmax

2αmax − 1

)2 n∑
i=1

(
x2

i

) 1
2αi−1
. (3.15)

Next, when x ∈ Ω, let H(x) ≤ W. Since H(x) ≤ W, we can obtain that
1
W

∑n
i=1 (xi)

2αi
2αi−1 < 1. From that

and Lemma 2.4, we get
n∑

i=1

(
2αi

2αi − 1

)2 (
x2

i

) 1
2αi−1
≥

(
2αmax

2αmax − 1

)2 n∑
i=1

(
x2

i

) 1
2αi−1
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=

(
2αmax

2αmax − 1

)2 n∑
i=1

[(
x2

i

) αi
2αi−1

] 1
αi

≥

(
2αmax

2αmax − 1

)2  n∑
i=1

(xi)
2αi

2αi−1


1
αi

=

(
2αmax

2αmax − 1

)2

W
1
αi

 1
W

n∑
i=1

(xi)
2αi

2αi−1


1
αi

≥

(
2αmax

2αmax − 1

)2

W
1
αi

 1
W

n∑
i=1

(xi)
2αi

2αi−1


1
αmin

=

(
2αmax

2αmax − 1

)2

W
1
αi
− 1
αmin (H(x))

1
αmin .

(3.16)

Note that the monotonicity of W
1
αi
− 1
αmin is related to the value range of W. When 0 < W ≤ 1, W

1
αi
− 1
αmin

is an increasing function of αi, then W
1
αi
− 1
αmin ≥ W

1
αmin
− 1
αmin = 1 and if W > 1, W

1
αi
− 1
αmin is a decreasing

function on αi, we have W
1
αi
− 1
αmin ≥ W

1
αmax
− 1
αmin . Combining these two cases, we have W

1
αi
− 1
αmin ≥

min{1, W
1
αmax
− 1
αmin } = W

1
αmax
− 1
αmin := σ with σ being a positive constant. Substituting it into Eq (3.16),

we have
∑n

i=1

(
2αi

2αi−1

)2 (
x2

i

) 1
2αi−1
≥ σ

(
2αmax

2αmax−1

)2
(H(x))

1
αmin , namely,

∇T
x H(x)∇xH(x) ≥ σ

(
2αmax

2αmax − 1

)2

(H(x))
1
αmin . (3.17)

Substituting (3.17) into (3.14), one can get

V̇(x) ≤ −
αmin

Ta(αmin − 1)
exp[(2H(x))1− 1

αmin ](2H(x))
1
αmin− ∥ z ∥2 +r ∥ ω ∥2 . (3.18)

Now, we prove (3.5) holds.
By letting Γ(t, x) = V(x) +

∫ t

0
(∥ z(s) ∥2 −γ2 ∥ ω(s) ∥2)ds, we next indicate that Γ(t, x) ≤ 0.

Noting that r ≤ γ2, we obtain

Γ̇(t, x) =V̇(x)+ ∥ z ∥2 −γ2 ∥ ω ∥2

≤ −
αmin

Ta(αmin − 1)
exp[(2H(x))1− 1

αmin ](2H(x))
1
αmin

− ∥ z ∥2 +r ∥ ω ∥2 + ∥ z ∥2 −γ2 ∥ ω ∥2

≤(r − γ2) ∥ ω ∥2≤ 0.

(3.19)

Using the condition of zero-state response and integrating (3.19) over 0 and t result in

V(x) +
∫ t

0
(∥ z(s) ∥2 −γ2 ∥ ω(s) ∥2)ds ≤ 0. (3.20)

Since V(x) ≥ 0, one obtains ∫ t

0
∥ z ∥2 ds ≤ γ2

∫ t

0
∥ ω(s) ∥2)ds. (3.21)
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In addition, noting that αi
2αi−1 < 1 and xT x =

∑n
i=1 (xi)2, we have

xT x = c2 ∑n
i=1

(
xi
c

)2
≤ c2 ∑n

i=1

[(
xi
c

)2
] αi

2αi−1
= c2

c
2αi

2αi−1

∑n
i=1

(
x2

i

) αi
2αi−1
= c

2αi−2
2αi−1 H(x) holds on Ω.

The monotonicity of c
2αi−2
2αi−1 is related to the value range of c. When 0 < c ≤ 1, c

2αi−2
2αi−1 is a decreasing

function of αi, then c
2αi−2
2αi−1 ≤ c

2αmin−2
2αmin−1 and if c > 1, c

2αi−2
2αi−1 is an increasing function of αi, we

have c
2αi−2
2αi−1 ≤ c

2αmax−2
2αmax−1 . Combining these two equations, we can reach the conclusion

that c
2αi−2
2αi−1 ≤ max{c

2αmin−2
2αmin−1 , c

2αmax−2
2αmax−1 } := δ, from which we have xT x ≤ δH(x).

Noting Assumption 3.1 and (3.20), we have xT x ≤ δH(x) = 1
2δV (t, x) ≤ δγ

2

2

∫ T

0
∥w(s)∥2ds ≤ δγ2

2µ2 ,

namely, ∥x∥2 ≤ δγ
2

2µ2 .
Afterward, it is shown that x(t) ∈ Ω holds when ∀t > 0, φ = 0, ω ∈ Λ. With (3.4), it must be

demonstrated that

xT x −
δγ2

2µ2 ≤ 0, s.t. 2 − 2αT
j x ≥ 0( j = 1, · · · , n). (3.22)

From [42], we have

ζT

 2s − δγ
2

2µ2 −sαT
j

−sα j In

 ζ ≥ 0( j = 1, 2, · · · , n), (3.23)

which indicates that (3.9) holds with free scalar s > 0 introduced by the S-procedure and ζ =
[
1, xT

]T
.

Thus, we conclude that x(t) remains in Ω for all t > 0, φ = 0, ω ∈ Λ.
Next, we demonstrate the stability in a predefined time for the CLS (3.1) when ω disappears.
Noting (3.18), we get

V̇(x) ≤ −
αmin

Ta(αmin − 1)
exp[(2H(x))1− 1

αmin ](2H(x))
1
αmin− ∥ z ∥2

≤ −
αmin

Ta(αmin − 1)
exp[(2H(x))1− 1

αmin ](2H(x))
1
αmin

= −
αmin

Ta(αmin − 1)
exp[V1− 1

αmin ]V
1
αmin .

(3.24)

It implies Lemma 2.1 holds. Thus, it has been proved.
In Theorem 3.1, the controller (3.10) contains the delay term. Next, we present a controller without

containing the delay term for the NTDS (3.1).

Theorem 3.2. Consider the NTDS (3.1) under Assumption 3.1. For the presented Ta > 0 and γ > 0, if
(1) constant matrices L < 0, P > 0 and constant numbers ϵ > 0, r > 0 exist such that e(hλmax{P})χ2

r ≤ γ2,

2H(x)P − 2R(x) + ϵ−1In + r−1g2(x)gT
2 (x) −

1
γ2 g1(x)gT

1 (x) ≤ L < 0, (3.25)

−ϵT T(x)T (x) + 2H(x)P ≥ 0, (3.26)

(2) real numbers s > 0 and µ > 0 exist, and 2s − δγ
2

2µ2 −sαT
j

−sα j In

 ⩾ 0, j = 1, 2, · · · , n, (3.27)
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where δ := max{χ
2αmin−2
2αmin−1 , χ

2αmax−2
2αmax−1 } with χ := max {∥xt∥ : x ∈ Ω}, then a predefined-time H∞ controller of

the NTDS (3.1) could be constructed as follows:

g1(x)u = −
1
σTa
Φ(x) + g1(x)v, (3.28)

v = −
1
2

[hT(x)h(x) +
1
γ2 Im]gT

1 (x)∇xH(x), (3.29)

where σ := W
1
αmax
− 1
αmin with H(x) ≤ W when x ∈ Ω, αmin and αmax are similar to these in Theorem 3.1,

and Φ(x) is the predefined-time stabilizing function that follows

Φ(x) =2
1−3αmin
αmin
αmin(2αmax − 1)2

α2
max(αmin − 1)

G(t)

1 − αmin

αmin exp[(2G(t)H(x))1− 1
αmin ]∇xH(x) (3.30)

and G(t) := e
∫ t

t−h ∇
T
x H(x(s))P∇xH(x(s))ds.

Proof. To prove the system (3.1) has predefined-time H∞ stability, we first show∫ t

0
∥ z ∥2 ds ≤ γ2

∫ t

0
∥ ω(s) ∥2)ds (3.31)

holds for ω , 0.
Construct the Lyapunov function as:

V(t, xt) = 2e
∫ t

t−h ∇
T
x H(x(s))P∇xH(x(s))dsH(x) := 2G(t)H(x). (3.32)

Computing the derivative of V(t, xt) and using ∇T
x H(x)J(x)∇xH(x) = 0, one can obtain

V̇(t, xt) ≤G(t)[2∇T
x H(x)H(x)P∇xH(x) − 2∇T

x̃ H(x̃)H(x)P∇x̃H(x̃) − 2∇T
x H(x)R(x)∇xH(x)

+ 2∇T
x H(x)T (x)∇x̃H(x̃) + 2∇T

x H(x)g1(x)u + rωTω + r−1∇T
x H(x)g2(x)g2

T(x)∇xH(x)]
≤G(t)[∇x

TH(x)[2H(x)P − 2R(x) + ϵ−1In + r−1g2(x)g2
T(x)]∇xH(x)

− ∇x̃
TH(x̃)[2H(x)P − ϵT T(x)T (x)]∇x̃H(x̃) − 2∇T

x H(x)
1
σTa
Φ(x)

+ 2∇x
TH(x)g1(x)v + r ∥ ω ∥2]

=G(t)[∇x
TH(x)[2H(x)P − 2R(x) + ϵ−1In + r−1g2(x)g2

T(x) −
1
γ2 g1(x)g1

T(x)]∇xH(x)

+ ∇x̃
TH(x̃)[−2H(x)P + ϵT T(x)T (x)]∇x̃H(x̃) − 2∇T

x H(x)
1
σTa
Φ(x)− ∥ z ∥2 +r ∥ ω ∥2]

≤ −
2

1−2αmin
αmin

σTa

αmin(2αmax − 1)2

α2
max(αmin − 1)

G(t)

1
αmin exp[(2G(t)H(x))1− 1

αmin ]∇x
TH(x)∇xH(x)

−G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2 .

(3.33)

From that and using (3.17), one obtains

V̇(t, xt) ≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin −G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2 .

(3.34)
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Now, we prove (3.5) holds. Do so by letting Γ1(t, x) = V(t, xt) +
∫ t

0
(∥ z(s) ∥2 −γ2 ∥ ω(s) ∥2)ds. We

next indicate that Γ1(t, x) ≤ 0.
Assuming that ∥xt∥ ≤ χ, it follows that G(t) ≤ e(hλmax{P})χ2

. Substituting V̇(t, xt) into Γ̇1(t, x), and
noting that e(hλmax{P})χ2

r ≤ γ2,G(t) ≥ 1, one gets

Γ̇1(t, x) =V̇(t, xt)+ ∥ z ∥2 −γ2 ∥ ω ∥2

≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin

−G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2 + ∥ z ∥2 −γ2 ∥ ω ∥2

≤ − (G(t) − 1) ∥ z ∥2 +(e(hλmax{P})χ2
r − γ2) ∥ ω ∥2≤ 0.

(3.35)

The condition of zero-state response and the integration of Γ̇1(t, x) over 0 and t result in

V(t, xt) +
∫ t

0
(∥ z(s) ∥2 −γ2 ∥ ω(s) ∥2)ds ≤ 0, (3.36)

and under V(t, xt) ≥ 0, one obtains∫ t

0
∥ z ∥2 ds ≤ γ2

∫ t

0
∥ ω(s) ∥2)ds. (3.37)

Using αi
2αi−1 < 1 as well as xT x =

∑n
i=1 (xi)2, we have xT x = χ2 ∑n

i=1

(
xi
χ

)2
≤ χ2 ∑n

i=1

[(
xi
χ

)2
] αi

2αi−1
=

χ2

χ
2αi

2αi−1

∑n
i=1

(
x2

i

) αi
2αi−1
= χ

2αi−2
2αi−1 H(x) holds on Ω.

The monotonicity of χ
2αi−2
2αi−1 is related to the value range of χ. When 0 < χ ≤ 1, χ

2αi−2
2αi−1 is a decreasing

function, then χ
2αi−2
2αi−1 ≤ χ

2αmin−2
2αmin−1 and if χ > 1, χ

2αi−2
2αi−1 is an increasing function, we have χ

2αi−2
2αi−1 ≤ χ

2αmax−2
2αmax−1 .

Combining these two equations, we can conclude that χ
2αi−2
2αi−1 ≤ max{χ

2αmin−2
2αmin−1 , χ

2αmax−2
2αmax−1 } := δ, from which

we have xT x ≤ δH(x).
Noting Assumption 3.1, Eq (3.36) and G(t) ≥ 1, one has xT x ≤ δH(x) ≤ G(t)δH(x) = 1

2δV (t, xt) ≤
δγ

2

2

∫ T

0
∥ω(s)∥2ds ≤ δγ

2

2µ2 , namely, ∥x∥2 ≤ δγ
2

2µ2 .
Afterward, it is shown that x(t) ∈ Ω holds when ∀t > 0, φ = 0, ω ∈ Λ. With (3.4), it must be

demonstrated that

xT x −
δγ2

2µ2 ≤ 0, s.t. 2 − 2αT
j x ≥ 0( j = 1, · · · , n). (3.38)

From [42], we have

ξT

 2s − δγ
2

2µ2 −sαT
j

−sα j In

 ξ ≥ 0( j = 1, 2, · · · , n), (3.39)

which indicates that (3.27) holds with free scalar s > 0 introduced by the S-procedure and ξ =
[
1, xT

]T
.

Thus, we conclude that x(t) remains in Ω when all t > 0, φ = 0, ω ∈ Λ.
As the remainder of the proof is similar to Theorem 3.1, it is omitted.
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3.2. Adaptive robust stabilization result

Now, we present an adaptive robust stabilization result with external disturbance and uncertainty.
Consider the NTDS

ẋ = [J(x, p) − R(x, p)]∇xH1(x, p) + T (x)∇x̃H1(x̃) + g1(x)u + g2(x)ω, (3.40)

where p represents constant bounded uncertainty, inverse symmetric structure matrix J(x, p) and
symmetric matrix R(x, p) are given, J(x, 0) = J(x), R(x, 0) = R(x), J(x, p) = J(x) + ∆J(x, p),
R(x, p) = R(x) + ∆R(x, p), Hamiltonian function H1(x), which is smooth, reaches its minimum
when x = 0 that is H1(0) = 0, H1(x, 0) = H1(x), ∇xH1(x, p) = ∇xH1(x) + ∆H1(x, p), u ∈ Rm1 represents
system input, ω ∈ Rq indicates the external interference satisfying

∫ ∞
0
ωT(t)ω(t)dt < ∞, and φ(η)

denotes a vector-valued initial value function. Moreover, assume that g1(x) has full column rank.

Assumption 3.2. [14, 43–45] Assume ϕ(x) satisfies

[J(x, p) − R(x, p)]∆H1(x, p) = g1(x)ϕT(x)θ (3.41)

for ∀x ∈ Ω, where θ ∈ Rm2 indicates the constant vector determined by the uncertain parameter p and
assume the constant k > 0 exists such that ∥θ∥ ≤ k.

Under Assumption 3.2, noting that J(x, p) = J(x) + ∆J(x, p), R(x, p) = R(x) + ∆R(x, p), the
system (3.40) can be transformed into:

ẋ(t) = [J(x) − R(x)]∇xH1(x) + T (x)∇x̃H1(x̃) + g1(x)u + g2(x)ω + g1(x)ϕT(x)θ +G(x, p), (3.42)

where G(x, p) := [△J(x, p) − △R(x, p)]∇xH1(x).
Based on the NTDS (3.40) and Lemma 2.3, we can easily know that matrix M(x) ∈ Rn×n as well as

positive constant ϖ exist such that ∇xH1(x) = M(x)x, and

∥ G(x, p) ∥2≤ ϖ ∥ x ∥2, x ∈ Ω, (3.43)

where
ϖ =: λmax{MT(x)[∆J(x, p) − ∆R(x, p)]T[∆J(x, p) − ∆R(x, p)]M(x)}. (3.44)

To investigate the predefined-time stabilizing issue, we need to convert the Hamiltonian function H1(x)
into:

H(x) =
n∑

i=1

(
x2

i

) αi
2αi−1 (αi > 1, i = 1, · · · , n). (3.45)

To do this, the controller u is designed as

g1(x)u = [J(x) − R(x)]∇xH2(x) + T (x)∇x̃H2(x̃) + [ιIn − T (x)]∇x̃H(x̃) + g1(x)v, (3.46)

where v represents a new input, ι > 0, and ι2 = dH(x) with d being a positive constant, H2(x) :=
H(x) − H1(x), v = v1 + v2 with v1 and v2 being determined later.

Substituting (3.46) into (3.42), system (3.42) is expressed as

ẋ(t) = [J(x) − R(x)]∇xH(x) + ιIn∇x̃H(x̃) + g1(x)v + g2(x)ω + g1(x)ϕT(x)θ +G(x, p). (3.47)

Consider the system (3.47), set γ > 0 as disturbance suppression level, and choose penalty signal
z = h(x)gT

1 (x)∇xH(x), where h(x) denotes the weight matrix of the appropriate dimension.
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Theorem 3.3. Consider the NTDS (3.40) under Assumptions 3.1 and 3.2. For the presented Ta > 0
and γ > 0, if
(1) constant matrices L, P > 0, Q ≥ 1

2k2In and constant numbers r > 0, b > 0 exist such
that e(hλmax{P})a2

r ≤ γ2,

2H(x)P − 2R(x) + r−1g2(x)g2
T(x) −

1
γ2 g1(x)g1

T(x) + 2In +ϖNT(x)N(x) ≤ L < −b−1In, (3.48)

2H(x)P − ι2In ≥ 0, (3.49)

∇T
x H(x)∇xH(x) − bϕ(x)gT

1 (x)g1(x)ϕT(x) ≥ 0, (3.50)

where k > 0, ϖ and ι are given in Assumption 3.2, (3.44) and (3.46), respectively,

N(x) := Diag
{

( 2α1−1
2α1

)x
2α1−2
2α1−1

1 , (2α2−1
2α2

)x
2α2−2
2α2−1

2 , · · · , ( 2αn−1
2αn

)x
2αn−2
2αn−1
n

}
, and

(2) real numbers s > 0 and µ > 0 exist, and 2s − δγ
2

2µ2 −sαT
j

−sα j In

 ⩾ 0, j = 1, 2, · · · , n, (3.51)

where δ := max{a
2αmin−2
2αmin−1 , a

2αmax−2
2αmax−1 } with a := max {∥xt∥ : x ∈ Ω}, then a predefined-time adaptive robust

controller of the NTDS (3.47) could be constructed as

g1(x)v1 = −
1
σTa
Φ(x), (3.52)

g1(x)v2 = −
1
2

g1(x)[hT(x)h(x) +
1
γ2 Im]g1

T(x)∇xH(x) − Q∇xH(x), (3.53)

where σ := min{1, W
1
αmax
− 1
αmin } with H(x) ≤ W when x ∈ Ω, αmin and αmax are similar to these in

Theorem 3.1, and Φ(x) is given in (3.30).
Proof. V(t, xt) is set as follows:

V(t, xt) = 2e
∫ t

t−h ∇
T
x H(x(s))P∇xH(x(s))dsH(x) := 2G(t)H(x). (3.54)

When we compute the derivative of V(t, xt) and use ∇x
TH(x)J(x)∇xH(x) = 0, one can obtain

V̇ (t, xt) ⩽G(t)[2∇T
x H(x)H(x)P∇xH(x) − 2∇T

x̃ H(x̃)H(x)P∇x̃H(x̃)

− 2∇T
x H(x)R∇xH(x) + ∇T

x H(x)∇xH(x) + ι2∇T
x̃ H(x̃)∇x̃H(x̃) − 2∇T

x H(x)
1
σTa
Φ(x)

− ∥ z ∥2 −
1
γ2∇

T
x H(x)g1(x)gT

1 (x)∇xH(x) + r−1∇T
x H(x)g2(x)gT

2 (x)∇xH(x) + rωTω

+ ∇T
x H(x)∇xH(x) +GT(x, p)G(x, p) + 2∇T

x H(x)g1(x)ϕT(x)θ − 2∇T
x H(x)Q∇xH(x)].

(3.55)

There exists a matrix N(x) := Diag
{

(2α1−1
2α1

)x
2α1−2
2α1−1

1 , ( 2α2−1
2α2

)x
2α2−2
2α2−1

2 , · · · , ( 2αn−1
2αn

)x
2αn−2
2αn−1
n

}
such that

x := N(x)∇xH(x) holds, and using (3.43), one can get

GT(x, p)G(x, p) ≤ ϖxTx := ϖ∇x
TH(x)NT(x)N(x)∇xH(x). (3.56)
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Substituting (3.56) and (3.17) into (3.55), we have

V̇(t, xt) ⩽G(t)[∇T
x H(x)L∇xH(x)− ∥ z ∥2 −∇T

x̃ H(x̃)[2H(x)P − ι2In]∇x̃H(x̃)

− 2∇T
x H(x)

1
σTa
Φ(x) + rωTω + 2∇T

x H(x)g1(x)ϕT(x)θ − 2∇T
x H(x)Q∇xH(x)]

≤G(t)∇T
x H(x)L∇xH(x) −

2
1−2αmin
αmin

σTa

αmin(2αmax − 1)2

α2
max(αmin − 1)

G(t)

1
αmin exp[(2G(t)H(x))1− 1

αmin ]

× ∇T
x H(x)∇xH(x) −G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2 +2G(t)∇T

x H(x)g1(x)ϕT(x)θ
− 2G(t)∇T

x H(x)Q∇xH(x)

≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin +G(t)∇T

x H(x)L∇xH(x)

−G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2 +2G(t)∇T
x H(x)g1(x)ϕT(x)θ − 2G(t)∇T

x H(x)Q∇xH(x).

(3.57)

Noting that ∥ θ ∥2≤ k2 and Q ≥ 1
2k2In, one can obtain that −2Q ≤ −k2In ≤ −θ

TθIn, which is

−2∇T
x H(x)Q∇xH(x) ≤ −θT∇T

x H(x)∇xH(x)θ. (3.58)

Substituting (3.58) into (3.57), and noting (3.48) and (3.50), one can get

V̇(t, xt) ≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin

+G(t)[∇T
x H(x)L∇xH(x) + 2∇T

x H(x)g1(x)ϕT(x)θ − θT∇T
x H(x)∇xH(x)θ]

−G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2

≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin

+G(t)[∇T
x H(x)[L + b−1In]∇xH(x)

− θT[∇T
x H(x)∇xH(x) − bϕ(x)gT

1 (x)g1(x)ϕT(x)]θ]
−G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2

≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin

−G(t) ∥ z ∥2 +G(t)r ∥ ω ∥2 .

(3.59)

First, we prove (3.5) holds by letting D (t, x) = V(t, xt) +
∫ t

0
(∥ z(s) ∥2 −γ2 ∥ ω(s) ∥2)ds. Then we

indicate that D (t, x) ≤ 0.
Substituting (3.59) into Ḋ (t, x), we get

Ḋ (t, x) =V̇(t, xt)+ ∥ z ∥2 −γ2 ∥ ω ∥2

≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin

+ (G(t)r − γ2) ∥ ω ∥2 +(−G(t) + 1) ∥ z ∥2 .

(3.60)

Assuming that ∥xt∥ ≤ a, it follows that G(t) ≤ e(hλmax{P})a2
, from which we obtain Ḋ (t, x) ≤

−
αmin

Ta(αmin−1) exp[(2G(t)H(x))1− 1
αmin ](2G(t)H(x))

1
αmin + (e(hλmax{P})a2

r − γ2) ∥ ω ∥2 +(−G(t) + 1) ∥ z ∥2 .
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Noting that e(hλmax{P})a2
r ≤ γ2 and G(t) ≥ 1, one gets

Ḋ (t, x) ≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin < 0. (3.61)

The condition of zero-state response and the integration of Ḋ (t, x) over 0 and t result in

V(t, xt) +
∫ t

0
(∥ z(s) ∥2 −γ2 ∥ ω(s) ∥2)ds ≤ 0, (3.62)

and with V(t, xt) ≥ 0, we get ∫ t

0
∥ z ∥2 ds ≤ γ2

∫ t

0
∥ ω(s) ∥2)ds. (3.63)

Furthermore, using αi
2αi−1 < 1 and xT x =

∑n
i=1 (xi)2, it is easy to obtain that xT x = a2 ∑n

i=1

(
xi
a

)2
≤

a2 ∑n
i=1

[(
xi
a

)2
] αi

2αi−1
= a2

a
2αi

2αi−1

∑n
i=1

(
x2

i

) αi
2αi−1
= a

2αi−2
2αi−1 H(x) holds on Ω.

Similar to Theorem 3.1, we can get xT x ≤ δH(x).
Noting Assumption 3.1 and Eq (3.62), we have xT x ≤ δH(x) ≤ G(t)δH(x) = 1

2δV (t, xt) ≤ δ
γ2

2

×
∫ T

0
∥ω(s)∥2ds ≤ δγ

2

2µ2 , namely, ∥x∥2 ≤ δγ
2

2µ2 .
Afterward, it is shown that x(t) ∈ Ω holds when ∀t > 0, φ = 0, ω ∈ Λ. With (3.4), it must be

demonstrated that

xT x −
δγ2

2µ2 ≤ 0, s.t. 2 − 2αT
j x ≥ 0( j = 1, · · · , n). (3.64)

From [42], we have

ςT

 2s − δγ
2

2µ2 −sαT
j

−sα j In

 ς ≥ 0( j = 1, 2, · · · , n), (3.65)

which indicates that (3.64) holds with free scalar s > 0 introduced by the S-procedure and ζ =
[
1, xT

]T
.

Thus, we conclude that x(t) remains in Ω for all t > 0, φ = 0, ω ∈ Λ.
Next, we demonstrate the stability in the predefined time for the NTDS (3.47) when ω disappears.
Noting (3.59), one obtains

V̇(t, xt) ≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin −G(t) ∥ z ∥2

≤ −
αmin

Ta(αmin − 1)
exp[(2G(t)H(x))1− 1

αmin ](2G(t)H(x))
1
αmin

= −
αmin

Ta(αmin − 1)
exp[V1− 1

αmin ]V
1
αmin ,

(3.66)

which implies that Lemma 2.1 holds when ω = 0. Thus, it has been proved.

4. Illustrative example

Take into account the following pollution control system with the single delay for rivers [46, 47]:

ẋ = (A0 +∆A0(t)) x + (A1 + ∆A1(t)) x̃ + Bu(t) + ω̄(t), (4.1)
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where A1 = β0η2I2, ∆A1(t) = ∆βη2I2, B = Diag {η1, 1} ,

A0 =

[
−k10 − η1 − η2 0
−k30 −k20 − η1 − η2

]
,∆A0(t) =

[
−∆k1(t) 0
−∆k3(t) −∆k2(t)

]
.

From Ref. [47], we are aware that △A0(t) = BΨ(t), ω̄(t) = Bω(t) and constants ρi(i = 1, 2) > 0,
where ∥Ψ(t)∥ ≤

√
ρ1, ∥ω(t)∥ ≤

√
ρ2. Ref. [46] explains the physical meaning of the above

parameters (for more details, please see Ref. [46]). Furthermore, assume

that x = [x1, x2]T ∈ Ω = {(x1, x2) : |x1| ≤ 2.5, |x2| ≤ 2.5} and △A0(t) =
[

p 0
p p

]
.

First, the Hamiltonian form of system (4.1) is expressed as follows:

ẋ = (J − R)∇xHa(x) + T∇x̃Ha(x̃) + g1u(t) + g2ω(t) + ∆A0(t)x, (4.2)

where Ha(x) = 0.5
(
x2

1 + x2
2

)
, T = A1 +△A1(t), g1 = g2 = B and J −R =: A0. Besides, since ∥G(x, p)∥ =

0, we can easily see that (3.43) holds on Ω with ϖ = 0.
In the following, we can obtain

△A0(t)x = [x1, x1 + x2]T p = B
[

1
η1

x1, x1 + x2

]T

p = g1(x)ϕT (x)θ, (4.3)

where θ = p and ϕ(x) =
[

1
η1

x1, x1 + x2

]
. Substituting (4.3) into (4.2), one gets

ẋ = [J − R]∇xHa(x) + T∇x̃Ha(x̃) + g1(x)u + g1(x)ω + g1(x)ϕT (x)θ. (4.4)

Next, design the controller in the following manner:

g1(x)u = [J − R]∇xHb(x) + T∇x̃Hb(x̃) + [ιIn − T ]∇x̃H(x̃) + g1(x)v, (4.5)

where v represents a new input, ι := (dH(x))
1
2 = (0.0001H(x))

1
2 , and Hb(x) := H(x) − Ha(x) with

H(x) = x
4
3
1 + x

6
5
2 (α1 = 2, α2 = 3). Noting that H(x) ≤ W when x ∈ Ω and selecting W = 8, one can

obtain σ := min{1, W
1
αmax
− 1
αmin } =

√
2

2
. As a result, the system (4.4) can be expressed as follows:

ẋ = [J − R]∇xH(x) + ιIn∇x̃H(x̃) + g1(x)v + g1(x)ω + g1(x)ϕT (x)θ. (4.6)

In addition, set γ = 0.19 as disturbance suppression level, and choose penalty
signal z = h(x)gT

1∇xH(x) = 4η1
3 x

1
3
1 +

6
5 x

1
5
2 , where h(x) = [1, 1] denotes the weight matrix of the

appropriate dimension.
Now, we demonstrate that all conditions of Theorem 3.3 hold for the system by choosing k10 = 19,

k20 = 5, k30 = 10, β0 = 0.6, △β = 0.02, η1 = 0.3, η2 = 0.7, and then we can obtain J(x) =[
0 5
−5 0

]
,R(x) =

[
20 5
5 6

]
, T = 0.434I2.

Meanwhile, set the parameters as follows: Ta = 0.1s and 0.05s, respectively, k = 4, b = 0.1661,

r = 0.035, P = 0.15I2, Q = 10I2. From x := N(x)∇xH(x), we have N = Diag
{

3
4

x
2
3
1 ,

5
6

x
4
5
2

}
. Then,

condition (1) holds for 0 < h < 0.5.
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Selecting α j = 0.1( j = 1, 2), s = 10 and µ = 0.06, the equations α j

∣∣∣x j

∣∣∣ ≤ 1 and (3.51) are valid. It
follows that condition (2) of Theorem 3.3 holds.

For this system, Theorem 3.3 is fulfilled when 0 < h < 0.5. Based on Theorem 3.3, we design a
adaptive robust controller in the predefined time for the system (4.2) as

u1 = −139.0735x
1
3
1 − 0.6x

1
5
2 + 66.6667x1

−1.4467x̃1 + 0.0444(
√

x
4
3
1 + x

6
5
2 )x̃

1
3
1

−
6.1728x

1
3
1

Ta

√
exp(0.1333x

2
3
1 + 0.108x

2
5
2 )

× exp(
√

(2x
4
3
1 + 2x

6
5
2 ) exp(0.1333x

2
3
1 + 0.108x

2
5
2 )),

u2 = −13.5333x
1
3
1 − 36.4205x

1
5
2 + 10x1 + 6x2

−0.434x̃2 + 0.012(
√

x
4
3
1 + x

6
5
2 )x̃

1
5
2

−
1.6667x

1
5
2

Ta

√
exp(0.1333x

2
3
1 + 0.108x

2
5
2 )

× exp(
√

(2x
4
3
1 + 2x

6
5
2 ) exp(0.1333x

2
3
1 + 0.108x

2
5
2 ))



. (4.7)

Choose h = 0.5 and p = 0.5. To assess how robust the controller (4.7) is against disturbances
from outside, a disturbance with magnitude [120, 120]T is introduced into our system in the time
interval [0.01s ∼ 0.03s]. Figures 1–4 are the simulation results.

Applying the predefined-time adaptive robust controller (4.7) to the system (4.2) with φ = (1.9, 0.5),
Ta = 0.05s and Ta = 0.1s, the simulation outcomes can be seen in Figure 1 as well as 2, and the
behaviors of the corresponding control inputs are shown in Figures 5 and 6, indicating the system
converges to zero within 0.05s and 0.1s. In addition, when the infinite-time controller designed in [34]
is applied to the system (4.6) with the same initial conditions and disturbance, the result is shown in
Figure 3, and the behavior of the corresponding control inputs is shown in Figure 7, and it is obvious
that the system states converge to zero in 0.35s.
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Figure 1. The behavior of x within predefined-time Ta=0.05s.
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Figure 2. The behavior of x within predefined-time Ta=0.1s.
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Figure 3. The behavior of x in an infinite-time controller.
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Figure 4. The behavior of x in a finite-time controller.
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Figure 5. The behavior of u within predefined-time Ta=0.05s.
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Figure 6. The behavior of u within predefined-time Ta=0.1s.
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Figure 7. The behavior of u in an infinite-time controller.
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Figure 8. The behavior of u in a finite-time controller.

In addition, we also give a comparison with the finite-time controller from [14] with the same initial
conditions and disturbance, Figure 4 illustrates the simulation result, and Figure 8 shows the behavior
of the corresponding control inputs. According to Figure 4, the states stabilize within 0.15s.

Comparing Figures 1 and 2, Figures 3 and 4, the predefined-time, infinite-time and finite-time
control schemes were applied to the same system (4.6) under the same initial conditions, the same
applied perturbations and the same parameters, respectively, and the comparison results are shown in
Table 1. Through Table 1, we can find that the system converges faster under predefined-time control.
Moreover, under the same disturbances, the CLS with the above-mentioned predefined-time controller
has a smaller amplitude and returns to equilibrium rapidly after the perturbation ends. Consequently,
the controller presented in this paper is shown that is very effective for robust stabilization calming.

Table 1. Comparison results of predefined time, finite time and infinite time control schemes.

Total system
convergence time

Convergence time of
the system after the
disappearance of
the disturbance

System amplitude after
adding the same disturbance

Predefined-time control
with T=0.05s

0.039s 0.009s 0.6

Predifined-time control
with T=0.1s

0.045s 0.015s 0.8

Finite-time control 0.1s 0.07s 1.55
Infinite-time control 0.31s 0.28s 1.58

5. Conclusions

Throughout the work, we have studied the predefined-time control problem for NTDSs based on
the Hamiltonian function approach. By choosing a suitable Hamiltonian form of different powers and
constructing appropriate Lyapunov functions, we have presented two corresponding predefined-time
control results, namely, H∞ control and adaptive robust control ones, which have guaranteed the
systems to be quickly calibrated in a predefined time and have shortened the calibration time and
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improved the control accuracy. The simulation results have indicated that the predefined-time
adaptive robust scheme presented here has quicker convergence and greater robustness over existing
infinite-time and finite-time control schemes. Moreover, unlike the results of existing Hamiltonian
systems (where the powers are the same), this paper uses a more realistic form of different power
Hamiltonian functions, implying its wider application.
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