Research article Special Issues

Adaptive fuzzy consensus tracking control of multi-agent systems with predefined time

  • Received: 12 December 2024 Revised: 14 February 2025 Accepted: 25 February 2025 Published: 10 March 2025
  • MSC : 90C29, 93B52

  • This article concentrated on practically predefined-time consensus tracking control of multi-agent systems (MASs) exhibiting strict feedback dynamics, and attaining a predefined level of accuracy. Specifically, a sufficient condition was derived to decide whether the consensus error converges into a predefined region in a certain predefined time that can be appointed beforehand irrespective of initial conditions. By the established stability criterion, a distributed robust fuzzy controller was designed, whose primary aim is to ensure the cooperative stability of the consensus output tracking errors. Command filters were utilized to obtain the estimations of virtual inputs and their derivatives. More notably, the followers can track a designated trajectory structure guided by the leader within a predefined time and tracking errors can be arbitrarily small, which provides a theoretical criterion for the consensus tracking problem of MASs. Finally, an example was utilized to indicate the effectiveness and practicality of the proposed approach.

    Citation: Fang Zhu, Pengtong Li. Adaptive fuzzy consensus tracking control of multi-agent systems with predefined time[J]. AIMS Mathematics, 2025, 10(3): 5307-5331. doi: 10.3934/math.2025245

    Related Papers:

  • This article concentrated on practically predefined-time consensus tracking control of multi-agent systems (MASs) exhibiting strict feedback dynamics, and attaining a predefined level of accuracy. Specifically, a sufficient condition was derived to decide whether the consensus error converges into a predefined region in a certain predefined time that can be appointed beforehand irrespective of initial conditions. By the established stability criterion, a distributed robust fuzzy controller was designed, whose primary aim is to ensure the cooperative stability of the consensus output tracking errors. Command filters were utilized to obtain the estimations of virtual inputs and their derivatives. More notably, the followers can track a designated trajectory structure guided by the leader within a predefined time and tracking errors can be arbitrarily small, which provides a theoretical criterion for the consensus tracking problem of MASs. Finally, an example was utilized to indicate the effectiveness and practicality of the proposed approach.



    加载中


    [1] K. Liu, Z. Ji, Dynamic event-triggered consensus of general linear multi-agent systems with adaptive strategy, IEEE T. Circuits II, 69 (2022), 3440–3444. http://dx.doi.org/10.1109/TCSII.2022.3144280 doi: 10.1109/TCSII.2022.3144280
    [2] P. Zhang, H. Xue, S. Gao, J. Zhang, Distributed adaptive consensus tracking control for multi-agent system with communication constraints, IEEE T. Parall. Distr., 32 (2021), 1293–1306. http://dx.doi.org/10.1109/TPDS.2020.3048383 doi: 10.1109/TPDS.2020.3048383
    [3] H. Qiu, I. Korovin, H. Liu, S. Gorbachev, N. Gorbacheva, J. Cao, Distributed adaptive neural network consensus control of fractional-order multi-agent systems with unknown control directions, Inform. Sci., 655 (2024), 119871. http://dx.doi.org/10.1016/j.ins.2023.119871 doi: 10.1016/j.ins.2023.119871
    [4] Y. Wang, Y. Zhao, Arbitrary spatial trajectory reconstruction based on a single inertial sensor, IEEE Sens. J., 23 (2023), 10009–10022. http://dx.doi.org/10.1109/JSEN.2023.3257867 doi: 10.1109/JSEN.2023.3257867
    [5] Y. Xie, Z. Lin, Global optimal consensus for higher-order multi-agent systems with bounded controls, Automatica, 99 (2019), 301–307. http://dx.doi.org/10.1016/j.automatica.2018.10.048 doi: 10.1016/j.automatica.2018.10.048
    [6] A. Basheer, M. Rehan, M. Tufail, M. A. Razaq, A novel approach for adaptive ${H}_{\infty}$ leader-following consensus of higher-order locally lipschitz multi-agent systems, Appl. Math. Comput., 395 (2021), 125749. http://dx.doi.org/10.1016/j.amc.2020.125749 doi: 10.1016/j.amc.2020.125749
    [7] D. Yao, H. Li, R. Lu, Y. Shi, Event-based distributed sliding mode formation control of multi-agent systems and its applications to robot manipulators, Inform. Sci., 614 (2022), 87–103. http://dx.doi.org/10.1016/j.ins.2022.09.059 doi: 10.1016/j.ins.2022.09.059
    [8] J. Yuan, T. Chen, Observer-based adaptive neural network dynamic surface bipartite containment control for switched fractional order multi-agent systems, Int. J. Adapt. Control, 36 (2022), 1619–1646. http://dx.doi.org/10.1002/acs.3413 doi: 10.1002/acs.3413
    [9] H. Liu, J. Shi, J. Cao, Y. Pan, Fractional-order echo state network backstepping control of fractional-order nonlinear systems, IEEE T. Emerg. Top. Comput. Intell., 8 (2024), 519–532. http://dx.doi.org/10.1109/TETCI.2023.3309739 doi: 10.1109/TETCI.2023.3309739
    [10] F. Xiao, L. Wang, J. Chen, Y. Gao, Finite-time formation control for multi-agent systems, Automatica, 45 (2009), 2605–2611. http://dx.doi.org/10.1016/j.automatica.2009.07.012 doi: 10.1016/j.automatica.2009.07.012
    [11] G. Dong, H. Li, H. Ma, R. Lu, Finite-time consensus tracking neural network FTC of multi-agent systems, IEEE T. Neur. Net. Lear., 32 (2021), 653–662. http://dx.doi.org/10.1109/TNNLS.2020.2978898 doi: 10.1109/TNNLS.2020.2978898
    [12] J. Wang, Y. Yan, Z. Liu, C. L. Philip Chen, C. Zhang, K. Chen, Finite-time consensus control for multi-agent systems with full-state constraints and actuator failures, Neural Networks, 157 (2023), 350–363. http://dx.doi.org/10.1016/j.neunet.2022.10.028 doi: 10.1016/j.neunet.2022.10.028
    [13] J. Huang, C. Wen, W. Wang, Y. Song, Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica, 51 (2015), 292–301. http://dx.doi.org/10.1016/j.automatica.2014.10.093 doi: 10.1016/j.automatica.2014.10.093
    [14] J. Duan, G. Duan, et al, Fixed-time time-varying output formation-containment control of heterogeneous general multi-agent systems, ISA T., 137 (2023), 210–221. http://dx.doi.org/10.1016/j.isatra.2023.01.008 doi: 10.1016/j.isatra.2023.01.008
    [15] T. Xiong, Z. Gu, Observer-based adaptive fixed-time formation control for multi-agent systems with unknown uncertainties, Neurocomputing, 423 (2021), 506–517. http://dx.doi.org/10.1016/j.neucom.2020.10.074 doi: 10.1016/j.neucom.2020.10.074
    [16] M. Firouzbahrami, A. Nobakhti, Cooperative fixed-time/finite-time distributed robust optimization of multi-agent systems, Automatica, 142 (2022), 110358. http://dx.doi.org/10.1016/j.automatica.2022.110358 doi: 10.1016/j.automatica.2022.110358
    [17] N. Zhang, J. Xia, J. H. Park, J. Zhang, H. Shen, Improved disturbance observer-based fixed-time adaptive neural network consensus tracking for nonlinear multi-agent systems, Neural Networks, 162 (2023), 490–501. http://dx.doi.org/10.1016/j.neunet.2023.03.016 doi: 10.1016/j.neunet.2023.03.016
    [18] H. Peng, Q. Zhu, Fixed time stability of impulsive stochastic nonlinear time-varying systems, Int. J. Robust Nonlin., 33 (2023), 3699–3714. http://dx.doi.org/10.1002/rnc.6589 doi: 10.1002/rnc.6589
    [19] H. Peng, Q. Zhu, Stability analysis of switched stochastic nonlinear functional systems, Int. J. Robust Nonlin., 34 (2024), 1956–1970. http://dx.doi.org/10.1002/rnc.7064 doi: 10.1002/rnc.7064
    [20] Y. Wu, H. Ma, M. Chen, H. Li, Observer-based fixed-time adaptive fuzzy bipartite containment control for multiagent systems with unknown hysteresis, IEEE T. Fuzzy Syst., 30 (2022), 1302–1312. http://dx.doi.org/10.1109/TFUZZ.2021.3057987 doi: 10.1109/TFUZZ.2021.3057987
    [21] D. Yao, C. Dou, D. Yue, X. Xie, Event-triggered practical fixed-time fuzzy containment control for stochastic multiagent systems, IEEE T. Fuzzy Syst., 30 (2022), 3052–3062. http://dx.doi.org/10.1109/TFUZZ.2021.3100930 doi: 10.1109/TFUZZ.2021.3100930
    [22] W. Wu, S. Tong, Fixed-time adaptive fuzzy containment dynamic surface control for nonlinear multiagent systems, IEEE T. Fuzzy Syst., 30 (2022), 5237–5248. http://dx.doi.org/10.1109/TFUZZ.2022.3170984 doi: 10.1109/TFUZZ.2022.3170984
    [23] J. D. Sánchez-Torres, E. N. Sanchez, A. G. Loukianov, Predefined-time stability of dynamical systems with sliding modes, In: 2015 American control conference (ACC), 2015, 5842–5846. http://dx.doi.org/10.1109/ACC.2015.7172255
    [24] T. Zhou, H. Wu, J. Cao, Distributed optimization in predefined-time for multi-agent systems over a directed network, Inform. Sci., 615 (2022), 743–757. http://dx.doi.org/10.1016/j.ins.2022.10.034 doi: 10.1016/j.ins.2022.10.034
    [25] Y. Liu, Y. Zhao, Z. Shi, D. Wei, Specified-time containment control of multi-agent systems over directed topologies, IET Control Theory A., 11 (2017), 576–585. http://dx.doi.org/10.1049/iet-cta.2016.1159 doi: 10.1049/iet-cta.2016.1159
    [26] S. Li, X. Nian, Z. Deng, Z. Chen, Predefined-time distributed optimization of general linear multi-agent systems, Inform. Sci., 584 (2022), 111–125. http://dx.doi.org/10.1016/j.ins.2021.10.060 doi: 10.1016/j.ins.2021.10.060
    [27] Y. Wang, Y. Song, D. J. Hill, M. Krstic, Prescribed-time consensus and containment control of networked multiagent systems, IEEE T. Cybernetics, 49 (2019), 1138–1147. http://dx.doi.org/10.1109/TCYB.2017.2788874 doi: 10.1109/TCYB.2017.2788874
    [28] T. F. Ding, M. F. Ge, C. Xiong, Z. Liu, G. Ling, Prescribed-time formation tracking of second-order multi-agent networks with directed graphs, Automatica, 152 (2023), 110997. http://dx.doi.org/10.1016/j.automatica.2023.110997 doi: 10.1016/j.automatica.2023.110997
    [29] X. Chen, Q. Sun, H. Yu, F. Hao, Predefined-time practical consensus for multi-agent systems via event-triggered control, J. Franklin I., 360 (2023), 2116–2132. http://dx.doi.org/10.1016/j.jfranklin.2023.01.001 doi: 10.1016/j.jfranklin.2023.01.001
    [30] C. Ma, M. Zheng, Y. Zhang, L. Li, Y. Zhang, Z. Liang, et al., Generalized projective control for leader-following multi-agent systems with predefined-time, Commun. Nonlinear Sci., 127 (2023), 107540. http://dx.doi.org/10.1016/j.cnsns.2023.107540 doi: 10.1016/j.cnsns.2023.107540
    [31] J. Jiang, J. Chi, X. Wu, H. Wang, X. Jin, Adaptive predefined-time consensus control for disturbed multi-agent systems, J. Franklin I., 361 (2024), 110–124. http://dx.doi.org/10.1016/j.jfranklin.2023.11.029 doi: 10.1016/j.jfranklin.2023.11.029
    [32] Z. Hou, J. Zhang, Z. Zhou, Z. Tan, W. Wang, J. Wang, et al., Prescribed-time event-triggered control of multi-agent systems based on continuous scaling function, J. Franklin I., 362 (2025), 107399. http://dx.doi.org/10.1016/j.jfranklin.2024.107399 doi: 10.1016/j.jfranklin.2024.107399
    [33] A. M. Alimi, C. Aouiti, E. A. Assali, Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication, Neurocomputing, 332 (2019), 29–43. http://dx.doi.org/10.1016/j.neucom.2018.11.020 doi: 10.1016/j.neucom.2018.11.020
    [34] M. M. Polycarpou, P. A. Ioannou, A robust adaptive nonlinear control design, In: 1993 American control conference, 1993, 1365–1369. http://dx.doi.org/10.23919/ACC.1993.4793094
    [35] Y. Wang, Y. Song, M. Krstic, C. Wen, Adaptive finite time coordinated consensus for high-order multi-agent systems: Adjustable fraction power feedback approach, Inform. Sci., 372 (2016), 392–406. http://dx.doi.org/10.1016/j.ins.2016.08.054 doi: 10.1016/j.ins.2016.08.054
    [36] L. Zhang, B. Chen, C. Lin, Y. Shang, Fuzzy adaptive fixed-time consensus tracking control of high-order multiagent systems, IEEE T. Fuzzy Syst., 30 (2022), 567–578. http://dx.doi.org/10.1109/TFUZZ.2020.3042239 doi: 10.1109/TFUZZ.2020.3042239
    [37] L. Zhang, Y. Su, Z. Wang, A simple non-singular terminal sliding mode control for uncertain robot manipulators, P. I. Mech. Eng. I J. Sys., 233 (2018), 666–676. http://dx.doi.org/10.1177/0959651818806797 doi: 10.1177/0959651818806797
    [38] F. Wang, B. Chen, X. Liu, C. Lin, Finite-time adaptive fuzzy tracking control design for nonlinear systems, IEEE T. Fuzzy Syst., 26 (2018), 1207–1216. http://dx.doi.org/10.1109/TFUZZ.2017.2717804 doi: 10.1109/TFUZZ.2017.2717804
    [39] N. Sheng, Z. Ai, J. Tang, Fuzzy adaptive command filtered backstepping fault-tolerant control for a class of nonlinear systems with actuator fault, J. Franklin I., 358 (2021), 6526–6544. http://dx.doi.org/10.1016/j.jfranklin.2021.06.018 doi: 10.1016/j.jfranklin.2021.06.018
    [40] Q. Shen, P. Shi, Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form, Automatica, 53 (2015), 120–124. http://dx.doi.org/10.1016/j.automatica.2014.12.046 doi: 10.1016/j.automatica.2014.12.046
    [41] P. Li, X. Wu, X. Chen, J. Qiu, Distributed adaptive finite-time tracking for multi-agent systems and its application, Neurocomputing, 481 (2022), 46–54. http://dx.doi.org/10.1016/j.neucom.2022.01.065 doi: 10.1016/j.neucom.2022.01.065
    [42] S. Tong, H. Zhou, Finite-time adaptive fuzzy event-triggered output-feedback containment control for nonlinear multiagent systems with input saturation, IEEE T. Fuzzy Syst., 31 (2023), 3135–3147. http://dx.doi.org/10.1109/TFUZZ.2023.3245222 doi: 10.1109/TFUZZ.2023.3245222
    [43] T. Yang, H. Kang, H. Ma, Adaptive fuzzy fixed-time tracking control for switched high-order multi-agent systems with input delay, IEEE T. Netw. Sci. Eng., 9 (2022), 3492–3503. http://dx.doi.org/10.1109/TNSE.2022.3185150 doi: 10.1109/TNSE.2022.3185150
    [44] H. Du, G. Wen, D. Wu, Y. Cheng, J. Lü, Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems, Automatica, 113 (2020), 108797. http://dx.doi.org/10.1016/j.automatica.2019.108797 doi: 10.1016/j.automatica.2019.108797
    [45] Y. Zhao, Z. Duan, G. Wen, G. Chen, Distributed finite-time tracking of multiple non-identical second-order nonlinear systems with settling time estimation, Automatica, 64 (2016), 86–93. http://dx.doi.org/10.1016/j.automatica.2015.11.0055 doi: 10.1016/j.automatica.2015.11.0055
    [46] A. Kamalamiri, M. Shahrokhi, M. Mohit, Adaptive finite-time neural control of non-strict feedback systems subject to output constraint, unknown control direction, and input nonlinearities, Inform. Sci., 520 (2020), 271–291. http://dx.doi.org/10.1016/j.ins.2020.02.005 doi: 10.1016/j.ins.2020.02.005
    [47] H. Liu, Y. Pan, J. Cao, H. Wang, Y. Zhou, Adaptive neural network backstepping control of fractional-order nonlinear systems with actuator faults, IEEE T. Neur. Net. Lear., 31 (2020), 5166–5177. http://dx.doi.org/10.1109/TNNLS.2020.2964044 doi: 10.1109/TNNLS.2020.2964044
    [48] S. Li, X. Peng, Y. Tang, Y. Shi, Finite-time synchronization of time-delayed neural networks with unknown parameters via adaptive control, Neurocomputing, 308 (2018), 65–74. http://dx.doi.org/10.1016/j.neucom.2018.04.053 doi: 10.1016/j.neucom.2018.04.053
    [49] Q. Wang, J. Cao, H. Liu, Adaptive fuzzy control of nonlinear systems with predefined time and accuracy, IEEE T. Fuzzy Syst., 30 (2022), 5152–5165. http://dx.doi.org/10.1109/TFUZZ.2022.3169852 doi: 10.1109/TFUZZ.2022.3169852
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(68) PDF downloads(14) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog