Citation: Weiwei Sun, Mengyang Qiu, Xinyu Lv. H∞ filter design for a class of delayed Hamiltonian systems with fading channel and sensor saturation[J]. AIMS Mathematics, 2020, 5(4): 2909-2922. doi: 10.3934/math.2020188
[1] | B. Fu, S. Li, J. Yang, Global output regulation for a class of single input Port-controlled Hamiltonian disturbed systems, Appl. Math. Comput., 325 (2018), 322-331. |
[2] | A. Macchelli, Passivity-based control of implicit port-Hamiltonian systems, SIAM J. Control Optim., 52 (2014), 2422-2448. doi: 10.1137/130918228 |
[3] | R. Ortega, A. J. van der Schaft, F. Castanos, et al. Control by interconnection and standard passivity-based control of port-Hamiltonian systems, IEEE Trans. Autom. Control, 53 (2008), 2527-2542. doi: 10.1109/TAC.2008.2006930 |
[4] | W. Sun, Stabilization analysis of time-delay Hamiltonian systems in the presence of saturation, Appl. Math. Comput., 217 (2011), 9625-9634. |
[5] | G. Liu, X. Liao, Fixed-time H∞ control for port-controlled Hamiltonian systems, IEEE Trans. Autom. Control, 64 (2018), 2753-2765. doi: 10.1109/TAC.2018.2874768 |
[6] | S. Aoues, F. L. FCardoso-Ribeiro, D. Matignon, et al. Modeling and control of a rotating flexible spacecraft: A port-Hamiltonian approach, IEEE Trans. Control Syst. Technol., 27 (2017), 355-362. doi: 10.1109/TCST.2017.2771244 |
[7] | B. Fu, S. Li, X. Wang, et al. Output feedback based simultaneous stabilization of two Portcontrolled Hamiltonian systems with disturbances, J. Franklin Inst., 356 (2019), 8154-8166. doi: 10.1016/j.jfranklin.2019.02.039 |
[8] | W. Sun, Y. Wu, L. Wang, Trajectory tracking of constrained robotic systems via a hybrid control strategy, Neurocomputing, 330 (2019), 188-195. doi: 10.1016/j.neucom.2018.11.008 |
[9] | D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal.: Hybrid Syst., 32 (2019), 294-305. doi: 10.1016/j.nahs.2019.01.006 |
[10] | R. Yang, G. Zhang, L. Sun, Finite-time robust simultaneous stabilization of a set of nonlinear time-delay systems, Int. J. Robust Nonlinear Control, 30 (2020), 1733-1753. doi: 10.1002/rnc.4848 |
[11] | X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146. |
[12] | X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22. |
[13] | J. Schiffer, E. Fridman, R. Ortega, Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation, Automatica, 74 (2016), 71-79. doi: 10.1016/j.automatica.2016.07.022 |
[14] | W. Sun, B. Fu, Adaptive control of time-varying uncertain nonlinear systems with input delay: A Hamiltonian approach, IET Control Theory Appl., 15 (2016), 1844-1858. doi: 10.1049/iet-cta.2015.1165 |
[15] | R. Yang, L. Sun, G. Zhang, et al. Finite-time stability and stabilization of nonlinear singular timedelay systems via Hamiltonian method, J. Franklin Inst., 356 (2019), 5961-5992. doi: 10.1016/j.jfranklin.2019.04.033 |
[16] | R. Yang, W. Pei, Y. Han, et al. Finite-time adaptive robust simultaneous stabilization of nonlinear delay systems by the Hamiltonian function method, Sci. China: Inform. Sci., in press, doi: 10.1007/s11432-019-2804-2. |
[17] | A. Venkatraman, A. J. van der Schaft, Full-order observer design for a class of Port-Hamiltonian systems, Automatica, 46 (2010), 555-561. doi: 10.1016/j.automatica.2010.01.019 |
[18] | A. Yaghmaei, M. J. Yazdanpanah, Structure preserving observer design for port-Hamiltonian systems, IEEE Trans. Autom. Control, 64 (2019), 1214-1220. doi: 10.1109/TAC.2018.2847904 |
[19] | W. Sun, X. Lv, K. Wang, et al. Observer-based output feedback stabilisation and L2-disturbance attenuation of uncertain Hamiltonian systems with input and output delays, Int. J. Syst. Sci., 50 (2019), 2565-2578. doi: 10.1080/00207721.2019.1671532 |
[20] | M. Fu, C. de Souza, Z. Luo, Finite-horizon robust Kalman filter design, IEEE Trans. Signal Process., 49 (2001), 2103-2112. doi: 10.1109/78.942638 |
[21] | A. Elsayed, M. J. Grimble, A new approach to the H∞ design of optimal digital linear filters, IMA J. Math. Control Inform., 6 (1989), 233-251. doi: 10.1093/imamci/6.2.233 |
[22] | F. Wang, Z. Wang, J. Liang, et al. A survey on filtering issues for two-dimensional systems: Advances and challenges, Int. J. Control. Autom. Syst., 18 (2020), 629-642. doi: 10.1007/s12555-019-1000-x |
[23] | D. Chen, W. Chen, J. Hu, et al. Variance-constrained filtering for discrete-time genetic regulatory networks with state delay and random measurement delay, Int. J. Syst. Sci., 50 (2019), 231-243. doi: 10.1080/00207721.2018.1542045 |
[24] | S. Liu, Z. Wang, Y. Chen, et al. Protocol-based unscented Kalman filtering in the presence of stochastic uncertainties, IEEE Trans. Autom. Control, 65 (2020), 1303-1309. doi: 10.1109/TAC.2019.2929817 |
[25] | H. Yang, P. Li, Y. Xia, et al. Reduced-order H∞ filter design for delta operator systems over multiple frequency intervals, IEEE Trans. Autom. Control, in press, doi: 10.1109/TAC.2020.2968962. |
[26] | B. Umberto, K. Dongnam, Z. Enrique, Dynamics and control for multi-agent networked systems: A finite-difference approach, Math. Models Methods Appl. Sci., 29 (2019), 755-790. doi: 10.1142/S0218202519400050 |
[27] | Y. Li, H. Li, W. Sun, Event-triggered control for robust set stabilization of logical control networks, Automatica, 95 (2018), 556-560. doi: 10.1016/j.automatica.2018.06.030 |
[28] | W. Sun, X. Lv, Practical finite-time fuzzy control for Hamiltonian systems via adaptive eventtriggered approach, Int. J. Fuzzy Syst, 22 (2020), 35-45. doi: 10.1007/s40815-019-00773-0 |
[29] | S. Dey, A. S. Leong, J. S. Evans, Kalman filtering with faded measurements, Automatica, 45 (2009), 2223-2233. doi: 10.1016/j.automatica.2009.06.025 |
[30] | D. E. Quevedo, A. Ahlén, A. S. Leong, et al., On Kalman filtering over fading wireless channels with controlled transmission powers, Automatica, 48 (2012), 1306-1316. doi: 10.1016/j.automatica.2012.03.025 |
[31] | Y. Chen, Z. Wang, Y. Yuan, et al., Distributed H∞ filtering for switched stochastic delayed systems over sensor networks with fading measurements, IEEE Trans. Cybern., 50 (2020), 2-14. doi: 10.1109/TCYB.2018.2852290 |
[32] | H. Dong, Z. Wang, H. Gao, et al., Event-based H∞ filter design for a class of nonlinear timevarying systems with fading channels and multiplicative noises, IEEE Trans. Signal Process., 63 (2015), 3387-3395. doi: 10.1109/TSP.2015.2422676 |
[33] | Q. Liu, W. Chen, Z. Wang, et al., Stabilization of MIMO systems over multiple independent and memoryless fading noisy channels, IEEE Trans. Autom. Control, 64 (2019), 1581-1594. doi: 10.1109/TAC.2018.2854643 |
[34] | Y. Li, S. Liu, M. Zhong, State estimation for stochastic discrete-time systems with multiplicative noises and unknown inputs over fading channels, Appl. Math. Comput., 320 (2018), 116-130. |
[35] | J. Hu, Z. Wang, H. Gao, et al., Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations, Automatica, 97 (2018), 150-160. doi: 10.1016/j.automatica.2018.07.027 |
[36] | H. Yang, Y. Li, H. Yuan, et al., Adaptive dynamic programming for security of networked control systems with actuator saturation, Inform. Sci., 460 (2018), 51-64. doi: 10.1016/j.ins.2018.05.039 |
[37] | Z. Wang, B. Shen, X. Liu, H∞ filtering with randomly occurring sensor saturations and missing measurements, Automatica, 48 (2012), 556-562. doi: 10.1016/j.automatica.2012.01.008 |
[38] | R. W. Eustace, B. A. Woodyatt, G. L. Merrington, et al., Fault signatures obtained from fault implant tests on an F404 engine, J. Eng. Gas Turbines Power, 116 (1994), 178-183. doi: 10.1115/1.2906789 |