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1. Introduction

As a special class of nonlinear systems, port-Hamiltonian system has distinct structural feature and
is easier to perform stability analysis than general nonlinear systems. The superiority of Hamiltonian
systems is that Hamilton function in the system can be used as a candidate of Lyapunov function,
and it can provide a more convenient way for system performance analysis. Many researches closely
related to Hamiltonian systems can be found in recent years [1–5]. Some control synthesis problems
based on Hamiltonian systems framework have been well studied [6–8]. Considering the inevitable
time-delay phenomenon [9–12], some studies on the time-delay Hamiltonian system have also been
investigated [13–16]. Besides, the issue of state estimation for Hamiltonian system has also received
some attentions. For example, passivity-based approach is proposed in [17, 18] in order to obtain full-
order observer for Hamiltonian systems. Output feedback stabilization based on observer method is
concerned in [19] for a class of delayed Hamiltonian systems with external disturbances.

As we all know, to study state estimation and filtering technology has important significance in
control field, such as target tracking and signal processing. Up to now, plenty of results have been
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reported in the literature on the state estimation problem for linear or nonlinear systems [20–24].
Among these results, the Kalman filtering scheme is proposed in [20] for the case that the dynamic
system and its external noise information are completely known. In [21], H∞ filtering was firstly
introduced where the input signal is assumed to be energy limited. Compared to Kalman filter, H∞
filter does not require too much known prior statistics of external noises. Up to now, H∞ filter
design has become a hot research topic in complex dynamic systems analysis, such as two-dimensional
systems [22], time-delay systems [23], stochastic uncertain systems [24], delta operator systems [25],
etc. However, the problem of H∞ filter design for continuous Hamiltonian systems has not been
studied yet.

On the other hand, with the rapid development of wireless communication technology, networked
control system is becoming increasingly popular due to its strong applicability in factory automation,
vehicle automated driving and other fields [26–28]. In practical applications, limited channel
capacity always bring incomplete measurements which appear as the networked induced phenomenon.
Comparing to the plenty of existing results on missing measurements, the fading channel problem in
the wireless network communication systems has not yet received adequate research attentions. The
existing studies show that the main causes of fading channel are some special physical factors such
as reflection, diffraction and scattering [29, 30]. If the phenomenon of fading measurement can’t be
handled carefully, it will inevitably affect the stability of the systems. So far, some efforts on networked
systems with fading channel have been made [31–34]. In these works, state estimator or H∞ filter has
been designed, feedback stabilization has been solved for the systems with fading channels.

In the process of communication signal transmission in networked system, another phenomenon
that occurs frequently due to the physical limitations of system components is called saturation. Such
nonlinear characteristic of sensor saturation not only degrades system performance, but also causes
instability of the system more severely. Even worse, this feature is almost impossible to eliminate.
By now, much progress has been made on filter/estimator design for systems with sensor saturation
[35–37]. In [35], the fault estimation problem for a class of uncertain time-varying stochastic systems
with randomly occurring fault and sensor saturations is investigated. A performance index function is
proposed in [36] to deal with actuator saturation under denial-of-service attacks by an iterative adaptive
dynamic programming algorithm. Nevertheless, as for filter design of Hamiltonian system with sensor
saturation, to the authors’ best knowledge, there is seldom relevant research reported.

Considering the factors discussed above, we can conclude that H∞ filtering problems have achieved
some preliminary results for linear and nonlinear systems. But when it comes to fading channel and
sensor saturation for Hamiltonian systems, although it is important in control analysis, the H∞ filtering
problems have not been fully studied. In this paper, we will focus on this problem and propose some
new results. The main contributions in this paper lie in two aspects: (1) a measurement output model
with fading channel and sensor saturation is proposed for Hamiltonian systems with wireless network
communication; (2) the filter design problem is, for the first time, solved for time delay Hamiltonian
system considering network induced phenomenon.

The remainder of this paper is organized as follows. The considered class of Hamiltonian system
is introduced and some preliminaries are presented in Section 2. In Section 3, the main results of
this paper are presented, and H∞ filtering performance analysis of the augmented system is given.
Furthermore, some sufficient conditions are given to obtain appropriate filter gain. Two simulation
examples are given in Section 4 to illustrate the validity of the main results. Finally, we conclude this
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paper in Section 5.

2. Problem formulation and preliminaries

Consider the following time varying delay Hamiltonian system{
ẋ(t) = A∇H(x(t)) + B∇H(x(t − d(t))) + Lv1(t)
z(t) = M∇H(x(t))

(2.1)

where x(t) =
[

x1(t) · · · xn(t)
]T
∈ Rn stands for the system state vector, z(t) =[

z1(t) · · · zp(t)
]T
∈ Rp represents the output to be estimated; v1(t) ∈ Rs represents the disturbance

input and belongs to L2([0,∞),Rs); ∇H(x(t)) is the gradient of H(x(t)), ∇H(x) := ∂H(x)/∂x; the
Hamiltonian H(x(t)) : Rn 7→ R is smooth which represents the total energy, H(x) ≥ 0,H(0) = 0;
A ∈ Rn×n is the structure matrix of the Hamiltonian system with AT + A ≤ 0; B, L and M are constant
matrices with appropriate dimensions. d(t) denotes the time-varying delay, and satisfies the following
assumptions:

0 ≤ d(t) ≤ τ, ḋ(t) ≤ µ < 1, (2.2)

where τ and µ are scalars.
The fading channel and sensor saturation are considered in the measurement model in this paper.

The actual measurement output is described as

y(t) = C(t)N∇H(x(t)) + σ(E∇H(x(t))) + Dv2(t), (2.3)

where y(t) =
[

y1(t) · · · yq(t)
]
∈ Rq is the actual measurement output; v2(t) ∈ Rq stands for the

measurement noise and belongs to L2([0,∞),Rq); N, E and D are known real matrix with appropriate
dimensions; N is a full rank matrix; C(t) = diag{α1(t), · · · , αq(t)} ∈ Rq×q denotes the memoryless
multiplicative fading channel. αi(t) is independently and identically distributed for each channel, and
its probability density function is distributed on the interval [0, 1] with E{αi(t)} = ᾱi,Var{αi(t)} = σ2

i ,
where ᾱi represents the mathematical expectation of αi(t) and σ2

i is the variance of αi(t). Both ᾱi and
σ2

i are known constants.

Remark 1. In wireless network systems, signals are transmitted between the various sensors through
the channels. These measurement signals experience stochastic fading or information losses during the
transmissions. This random fading phenomenon is manifested in Eq 2.3, where the random variable
αi(t) obeys any probability distribution over the interval [0, 1]. The probability of the attenuation
coefficient αi(t) can be estimated by statistical tests in practical applications. Moreover, in addition to
the random fading phenomenon, data error or packet loss in some digital network systems can also be
expressed by (2.3).

The saturation function σ(·) is defined as

σ(ϑ) =
[
σ(ϑ1) · · · σ(ϑq)

]T
, ∀ϑ ∈ Rq

where σ(ϑi) = sign(ϑi)min{1, |ϑi|} for each i = 1, · · ·, q. Here, the notation of “sign” denotes the signum
function, ϑ is the saturation level. There exists scalar 0 < bi < 1 such that

[σ(ϑi) − biϑi] [σ(ϑi) − ϑi] 6 0. (2.4)
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For system (2.1), the filter is constructed as the following structure:{ ˙̂x(t) = A∇H(x̂(t)) + B∇H(x̂(t − d(t))) + K[y(t) − C̄N∇H(x̂(t))]
ẑ(t) = M∇H(x̂(t)),

(2.5)

where x̂(t) ∈ Rn represents the estimate of the state, ẑ(t) ∈ Rp stands for the estimate of the output z(t),
C̄ = diag{ᾱ1, · · · , ᾱq}, and K is the filter gain to be determined.

Letting η(t) = [xT(t), x̂T(t)]T, z̃(t) = [zT(t), ẑT(t)]T, we get the following augmented system:{
η̇(t) = A∗∇H(η(t)) + B∗∇H(η(t − d(t))) + K∗σ(EE1∇H(η(t))) + L∗v(t)
z̃(t) = M∗∇H(η(t)),

(2.6)

where

A∗ =

[
A 0

KC(t)N A − KC̄N

]
, B∗ =

[
B 0
0 B

]
, L∗ =

[
L 0
0 KD

]
,

K∗ =

[
0
K

]
, E1 =

[
I
0

]T

, M∗ =

[
M 0
0 M

]T

, v(t) =

[
v1(t)
v2(t)

]
,

∇H(η(t)) =

[
∇TH(x(t))
∇TH(x̂(t))

]
, ∇H(η(t − d(t))) =

[
∇H(x(t − d(t)))
∇H(x̂(t − d(t)))

]
.

According to (2.4), the saturation function σ(·) satisfies[
σ(E1E∇H(η(t))) − ΛE1E∇H(η(t))

]T
·
[
σ(E1E∇H(η(t))) − E1E∇H(η(t))

]
6 0, (2.7)

where Λ = diag{b1, · · · , bq}.
We give the following assumption which will be used in the following proofs.

Assumption 1. The Hamilton function H(η(t)) and its gradient ∇H(η(t)) satisfies

1) ε1(‖η(t)‖) ≤ H(η(t)) ≤ ε2(‖η(t)‖),

2) ι1(‖η(t)‖) ≤ ∇TH(η(t))∇H(η(t)) ≤ ι2(‖η(t)‖),
where ε1, ε2, ι1, ι2 are class-K functions.

Our objective of this paper is to design a filter (2.5) for the delayed Hamiltonian system with fading
channel and sensor saturation. More specifically, we need to find out the filtering gain matrix K such
that the augmented system (2.6) satisfies the following requirements simultaneously:

i) The augmented system (2.6) with v(t) = 0 is asymptotically stable in the mean square;
ii) For a given scalar γ > 0, under the zero-initial condition, the system (2.6) with v(t) , 0 is L2

gain output stability, i.e.,
‖z̃(t)‖2 ≤ γ‖v(t)‖2, ∀v(t) , 0. (2.8)

3. Main results

In this section, let us investigate the filtering performance and filter design problems for
system (2.6). Firstly, we shall propose the following filtering performance criterion for the delayed
Hamiltonian systems (2.1) and (2.3) with fading channel and sensor saturation.
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Theorem 1. Given scalar µ < 1 and a time-varying delay d(t) satisfying (2.2), if there exist matrices
Q = QT > 0, Y = YT with proper dimensions and filtering gain K such that

Φ1 =


Π1 B∗ − (Y/2) −Y Π2

∗ −(1 − µ)Q Y/2 0
∗ ∗ Y 0
∗ ∗ ∗ −I

 < 0 (3.1)

holds, then the augmented system (2.6) is mean-square asymptotically stable with v(t) = 0, where

Π1 = Ā∗ + Ā∗T
+ Q + Y − ETET

1ΛTE1E,

Π2 = (K∗T
+ K∗ + ETET

1ΛT + E1E)/2,

and

Ā∗ =

[
A 0

KC̄N A − KC̄N

]
.

Proof: Choose a Lyapunov functional candidate as follows:

V(t) = 2H(η(t)) +

∫ t

t−d(t)
∇TH(η(θ))Q∇H(η(θ))dθ. (3.2)

Due to Assumption 1, we have

2ε1(‖η(t)‖) ≤ V(t) ≤ 2ε2(‖η(t)‖) + τπι2(η(t)),

where π = λmax(Q), λmax(·) (respectively, λmin(·)) means the largest (respectively, smallest) eigenvalue.
Thus, the derivative of V(t) along the trajectory of system (2.6) is given as

d(E[V(t)])
dt

= E[LV(t)]

= E[2∇TH(η(t))η̇(t) + ∇TH(η(t))Q∇H(η(t))
−(1 − ḋ(t))∇TH(η(t − d(t)))Q∇H(η(t − d(t)))]

= E[∇TH(η(t))(A∗ + A∗T
+ Q)∇H(η(t)) + 2∇TH(η(t))B∗∇H(η(t − d(t)))

+2∇TH(η(t))K∗σ(EE1∇H(η(t))) − (1 − ḋ(t))∇TH(η(t − d(t)))Q∇H(η(t − d(t)))]
= ∇TH(η(t))(Ā∗ + Ā∗T

+ Q)∇H(η(t)) + 2∇TH(η(t))B∗∇H(η(t − d(t)))
+2∇TH(η(t))K∗σ(EE1∇H(η(t))) − (1 − ḋ(t))∇TH(η(t − d(t)))Q∇H(η(t − d(t)))

≤ ∇TH(η(t))(Ā∗ + Ā∗T
+ Q)∇H(η(t)) + 2∇TH(η(t))B∗∇H(η(t − d(t)))

+2∇TH(η(t))K∗σ(EE1∇H(η(t))) − (1 − µ)∇TH(η(t − d(t)))Q∇H(η(t − d(t))), (3.3)

where the last inequality is based on (2.2).
It is easy to know that, for any symmetric matrix Y with proper dimensions, the following equation

is true

[∇TH(η(t)) −
∫ t

t−d(t)
[∇TH(η(s))]′ds]Y[∇H(η(t)) − ∇H(η(t − d(t))) −

∫ t

t−d(t)
[∇H(η(s))]′ds] ≡ 0, (3.4)

where [ · ]′ represents the derivative of the matrix in parentheses.
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Furthermore, (3.3) can be rewritten as

d(E[V(t)])
dt

≤ ∇TH(η(t))(Ā∗ + Ā∗T
+ Q + Y)∇H(η(t)) + 2∇TH(η(t))B∗∇H(η(t − d(t)))

−∇TH(η(t))Y∇H(η(t − d(t))) + 2∇TH(η(t))K∗σ(EE1∇H(η(t)))

−2∇TH(η(t))Y
∫ t

t−d(t)
[∇H(η(s))]′ds − (1 − µ)∇TH(η(t − d(t)))

·Q∇H(η(t − d(t))) +

∫ t

t−d(t)
[∇TH(η(s))]′dsY∇H(η(t − d(t)))

+

∫ t

t−d(t)
[∇TH(η(s))]′dsY

∫ t

t−d(t)
[∇H(η(s))]′ds. (3.5)

From (2.7), the above formula can be rewritten as the following formula

d(E[V(t)])
dt

≤ ∇TH(η(t))(Ā∗ + Ā∗T
+ Q + Y)∇H(η(t)) + 2∇TH(η(t))B∗∇H(η(t − d(t)))

−∇TH(η(t))Y∇H(η(t − d(t))) + 2∇TH(η(t))K∗σ(EE1∇H(η(t)))

−2∇TH(η(t))Y
∫ t

t−d(t)
[∇H(η(s))]′ds − (1 − µ)∇TH(η(t − d(t)))Q∇H(η(t − d(t)))

+

∫ t

t−d(t)
[∇TH(η(s))]′dsY∇H(η(t − d(t))) +

∫ t

t−d(t)
[∇TH(η(s))]′dsY

∫ t

t−d(t)
[∇H(η(s))]′ds

−σT(E1E∇H(η(t)))σ(E1E∇H(η(t))) + ∇TH(η(t))ETET
1ΛTσ(E1E∇H(η(t)))

+σT(E1E∇H(η(t)))E1E∇H(η(t)) − ∇TH(η(t))ETET
1ΛTE1E∇H(η(t))

= ξT
1Φ1ξ1, (3.6)

where

ξ1 =


∇H(η(t))

∇H(η(t − d(t)))∫ t

t−d(t)
[∇H(η(s))]′ds

σ(E1E∇H(η(t)))

 .
According to Assumption 1 and (3.1), we have

d(E[V(t)])
dt

≤ ξT
1Φ1ξ1 ≤ −ϕ‖∇H(η(t))‖2 ≤ −ϕι1(‖η(t)‖) < 0, (3.7)

where ϕ = λmin(−Φ1).
By Lyapunov-Krasovskii stability theorem, we can conclude that the augmented system (2.6) is

mean-square asymptotically stable with v(t) = 0. The proof is completed.
Theorem 1 shows that the system is asymptotically stable in mean square without external

disturbance. Next, we prove that the system satisfiesL2 gain output stability in the presence of external
disturbance.

Theorem 2. Given H∞ performance index γ > 0 and a known scalar µ < 1, the system (2.6) satisfies:

1) asymptotically stable in the mean square with v(t) = 0;
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2) for all v(t) , 0, under the zero-initial condition, the system (2.6) satisfies L2 gain output stability if
there exist matrices Q = QT > 0, Y = YT and filter gain K such that

Φ2 =


Π̄1 B∗ − (Y/2) −Y Π̄2 L∗

∗ −(1 − µ)Q Y/2 0 0
∗ ∗ Y 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −γ2I


< 0, (3.8)

where

Π̄1 = A∗ + A∗T
+ Q + Y − ETET

1ΛTE1E + M∗TM∗,

Π̄2 = (K∗T
+ K∗ + ETET

1ΛT + E1E)/2.

Proof: According to Theorem 1, the system (2.6) with v(t) = 0 is mean-square asymptotically stable.
Next we prove that for all v(t) , 0, under the zero initial condition, the system (2.6) satisfies L2 gain
output stability.

Consider a Lyapunov functional candidate which is defined in (3.2). The derivative of V(t) along
the trajectory of system (2.6) satisfies:

d(E[V(t)])
dt

≤ ∇TH(η(t))(Ā∗ + Ā∗T
+ Q + Y − ET

1ETΛTEE1)∇H(η(t))

+2∇TH(η(t))B∗∇H(η(t − d(t))) − ∇TH(η(t))Y∇H(η(t − d(t)))

−2∇TH(η(t))Y
∫ t

t−d(t)
[∇H(η(s))]′ds − (1 − µ)∇TH(η(t − d(t)))Q∇H(η(t − d(t)))

+

∫ t

t−d(t)
[∇TH(η(s))]′dsY∇H(η(t − d(t))) +

∫ t

t−d(t)
[∇TH(η(s))]′dsY

∫ t

t−d(t)
[∇H(η(s))]′ds

−σT(E1E∇H(η(t)))σ(E1E∇H(η(t))) + ∇TH(η(t))ETET
1ΛTσ(E1E∇H(η(t)))

+σT(E1E∇H(η(t)))E1E∇H(η(t)) − ∇TH(η(t))ETET
1ΛTE1E∇H(η(t))

+2∇TH(η(t))L∗v(t) + γ2vT(t)v(t) − γ2vT(t)v(t) + z̃T(t)z̃(t) − z̃T(t)z̃(t)
= ξT

2Φ2ξ2 + γ2vT(t)v(t) − z̃T(t)z̃(t), (3.9)

where

ξ2 =


∇H(η(t))

∇H(η(t − d(t)))∫ t

t−d(t)
[∇H(η(s))]′ds

σ(E1E∇H(η(t)))
v(t)


.

From (3.8), we obtain
d(E[V(t)])

dt
≤ γ2vT(t)v(t) − z̃T(t)z̃(t). (3.10)

Furthermore, simultaneously integrating both sides of (3.10) from [0,T ], we have

E[V(T )] − E[V(0)] ≤ γ2
∫ T

0
vT(t)v(t)dt −

∫ T

0
z̃T(t)z̃(t)dt.
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Since E[V(T )] − E[V(0)] ≥ 0, then∫ T

0
z̃T(t)z̃(t)dt ≤ γ2

∫ T

0
vT(t)v(t)dt. (3.11)

According to the definition of L2 norm, there is ‖z̃(t)‖2 ≤ γ‖v(t)‖2. This completes the proof.

Remark 2. There are two main difficulties in the theoretical derivation of this paper. The first difficulty
is how to establish the measurement output model. Due to the particularity of the Hamiltonian system,
its measurement output model is different from the general ones. Considering fully the structural
properties of the system and combining with the existing literatures on the sensor model, we introduce
a constant matrix N with suitable dimension in constructing the sensor model. The second difficulty is
how to solve the random term in the channel attenuation coefficient. For overcoming this difficulty, we
use the mean value in the stability derivation using Lyapunov-Krasovsill functional theorem.

Remark 3. Specifically, when the Hamiltonian in the Hamiltonian system (2.1) is H(x) = 1
2 x2, then

the system can be expressed as{
ẋ(t) = Ax(t)+Bx(t − d(t)) + Lv1(t)
z(t) = Mx(t).

(3.12)

Obviously, it is a linear system formulation. We may achieve the H∞ filter result for system (3.12)
according to Theorem 1 and Theorem 2. It can be seen that the main results of this paper can also
applicable for linear systems in the form of (3.12).

4. Illustrative examples

In this section, our main purpose is to demonstrate the feasibility and validity of the method
proposed in this paper. Two examples are given below.

Example 1. Consider the Hamiltonian systems described by (2.1) with the following parameters:

M =

[
−0.3 0.2
0.6 −0.7

]
, L =

[
0.8 0.5
0.3 0.6

]
, A =

[
−0.63 −0.7

0 −0.9

]
, B =

[
0.2 0
0 0.15

]
,

and the Hamiltonian H(x) is given as H(x) = 1
2 x2

1 + 1 − cos x2. It can be seen that the above nonlinear
functions satisfy Assumption 1 with ε2 = 2 and ι2 = 1. The time-varying delay is taken as d(t) =

(π + 2 arctan t)/6 from which we have µ = 0.33 and τ = 1.04.
In this example, the intensity of the measurement noise is given by D = [0.5 0.7]T, the constant

matrices are represented by

N =

[
1 0
0 1

]
, E =

[
0.3 0.2
0.4 0.2

]
.

The information received by each sensor is transmitted over the network with fading channel. The
channel attenuation coefficient of each sensor channel can be obtained by statistical experiments, and
the measurement signal has the following probability density function

p1
t (s) =


0.05, s = 0
0.10, s = 0.5
0.85, s = 1

, p2
t (s) =


0.06, s = 0
0.30, s = 0.5
0.60, s = 1
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with expectation ᾱ1 = 0.9 and variance σ2
1 = 0.065, expectation ᾱ2 = 0.75 and variance σ2

2 = 0.124.
The H∞ performance attenuation level is set as γ = 0.6. We solve the LMI (3.8) via Matlab and

obtain the filter gain

K =

[
1.3635 −0.7680
−0.9993 0.4183

]
.

In the simulation, the external disturbance inputs are selected as v1(t) = sin(10t/3), v2(t) =

cos(10t/3). The initial state of the system and its estimate are chosen as x(0) = [0.4, 0.4]T and
x̂(0) = [0.5, 0.5]T. Simulation results for this example are shown in Figures 1–3. The states of
the Hamiltonian system xi (i = 1, 2) and their estimates are shown in Figures 1 and 2. The output of
the Hamiltonian system z and its estimates are depicted in Figure 3. The simulation results show that
the proposed filters can guarantee the asymptotically stability and L2 gain output stability of delayed
Hamiltonian system under fading channel and sensor saturation.

Figure 1. State trajectory of x1 and its
estimate.

Figure 2. State trajectory of x2 and its
estimate.

Figure 3. Output z and its estimate.
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Example 2. The selected system model in this example is a test runs of an aircraft which is powered
by two F-404 engines. We intend to track this aircraft through wireless communication, which is
affected by fading channel and sensor saturation. In practical applications, the probability C(t) can be
determined by statistical tests. Consider the system model (2.1) in [32] and [38], where the nominal
system matrix A is linearized models from the F-404 aircraft engine system:

A =


−0.9158 −0.5380 −0.2698
0.1368 −1.5070 −0.3625
0.2869 0.1304 −1.1990

 .
Each channel measurement attenuation coefficient is chosen as follows

p1
t (s) =


0.05, s = 0
0.10, s = 0.5
0.85, s = 1

, p2
t (s) =


0.06, s = 0
0.30, s = 0.5
0.60, s = 1

, p3
t (s) =


0.04, s = 0
0.10, s = 0.5
0.75, s = 1

.

Through the above probability density functions, we can obtained the mathematical expectation γ̄i and
variance σ2

i (i = 1, 2, 3) are 0.9, 0.75, 0.8 and 0.065, 0.124, 0.248, respectively.

As discussed in [32], almost all aircraft engine systems are subject to uncontrolled external forces.
These external disturbances, such as gravity gradients, wind gusts, sensor and actuator noise can affect
the stability and reduce the control performance of the system. In this example, the intension of
measurement noise is given by D =

[
0.1 0.2 0.2

]T
.

In this model, a series of path points (x1, x2, x3) are used to track the position of the aircraft, x1 and
x2 represent the horizontal positions, and x3 represents the altitude of the aircraft. Now, we design the
time-varying filter in the form of (2.5) in the network communication environment to track the state of
the F-404 aircraft engine system. Actually, when we model aircraft engine system, fading channel and
sensor saturation must be taken into account. The corresponding parameters are given as follows:

M =


0.3 0.2 0.7
0.8 0.7 0.5
0.8 0.83 0.6

 , L =


0.8
0.6
0.5

 , B =


−0.2 0 0

0 −0.75 0
0 0 −0.86

 ,

N =


1 0 0
0 1 0
0 0 1

 , E =


0.27 0.16 0.32
0.23 0.14 0.21
0.27 0.31 0.14

 ,
and select the Hamilton function as

H(x) =
1
2

x2
1 + 1 − cos x2 +

1
2

x2
3,

In this example, the H∞ performance attenuation level is taken as γ = 0.7. We solve the LMI (3.8)
via MATLAB and get the filter gain

K =


−0.4083 0.2026 0.2878
0.1954 −0.7588 0.1719
0.2608 0.1630 −0.6488

 .
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The exogenous disturbance inputs are selected as v1(t) = sin(10t/3), v2(t) = cos(10t/3),
which are same as in Example 1. The initial states of the system and its estimate are selected
as x(0) = [0.4, 0.4, 0, 4]T and x̂(0) = [0.5, 0.5, 0.5]T. Simulation results for this example are shown
in Figures 4–7. The states of the system xi(i = 1, 2, 3) and their estimates are shown in Figures 4–6.
The output of the system z and its estimates are presented in Figure 7. The simulation results show that
the filters designed according to Theorem 1 and Theorem 2 can accurately estimate the system states
and make the augmented system L2 gain output stability in the presence of fading channel and sensor
saturation.

Figure 4. State trajectory of x1 and its
estimate.

Figure 5. State trajectory of x2 and its
estimate.

Figure 6. State trajectory of x3 and its
estimate.

Figure 7. Output z and its estimate.
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5. Conclusions

In this paper, we have dealt with the H∞ filtering design problem for a class of delayed Hamiltonian
systems with fading channel and sensor saturation. In this issue, a sensor model with fading channel
and sensor saturation are established. By Lyapunov-Krasovskii stability theorem, some sufficient
conditions have been proposed to ensure that the augmented system satisfies L2 gain output stability
under zero-initial condition. At the end of this paper, two illustrative examples give prominence to the
validity of H∞ filtering technology presented in this paper. A possible future research may be feedback
stabilization of nonlinear Hamiltonian systems with fading noisy channel.
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