Research article

Fixed/predefined-time generalized synchronization for stochastic complex dynamical networks with delays

  • Received: 14 December 2023 Revised: 17 January 2024 Accepted: 22 January 2024 Published: 29 January 2024
  • MSC : 05C82, 93E03

  • In this paper, the fixed/predefined-time generalized synchronization problem of stochastic complex dynamical networks with delays is studied for the first time. First, based on the feedback controller without linear terms, the results show that the controlled system has strong stability. Second, stochastic analysis methods, inequality techniques, and an extension of the existing fixed/predefined-time stability lemma ($ \eta $ range extension) are used to make the results of this paper more general. The sufficient conditions for generalized synchronization are established, and the settling time independent of the initial values are given. To illustrate the theoretical results, a numerical example is given.

    Citation: Qike Zhang, Tao Xie, Wenxiang Fang. Fixed/predefined-time generalized synchronization for stochastic complex dynamical networks with delays[J]. AIMS Mathematics, 2024, 9(3): 5482-5500. doi: 10.3934/math.2024266

    Related Papers:

  • In this paper, the fixed/predefined-time generalized synchronization problem of stochastic complex dynamical networks with delays is studied for the first time. First, based on the feedback controller without linear terms, the results show that the controlled system has strong stability. Second, stochastic analysis methods, inequality techniques, and an extension of the existing fixed/predefined-time stability lemma ($ \eta $ range extension) are used to make the results of this paper more general. The sufficient conditions for generalized synchronization are established, and the settling time independent of the initial values are given. To illustrate the theoretical results, a numerical example is given.



    加载中


    [1] A. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, Physica A, 311 (2002), 590–614. http://dx.doi.org/10.1016/S0378-4371(02)00736-7 doi: 10.1016/S0378-4371(02)00736-7
    [2] B. Tadić, Dynamics of directed graphs: the world-wide web, Physica A, 293 (2001), 273–284. http://dx.doi.org/10.1016/S0378-4371(01)00014-0 doi: 10.1016/S0378-4371(01)00014-0
    [3] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200. http://dx.doi.org/10.1103/PhysRevLett.86.3200 doi: 10.1103/PhysRevLett.86.3200
    [4] F. Wang, Y. Sun, Self-organizing peer-to-peer social networks, Comput. Intell., 24 (2008), 213–233. http://dx.doi.org/10.1111/j.1467-8640.2008.00328.x doi: 10.1111/j.1467-8640.2008.00328.x
    [5] M. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167–256. http://dx.doi.org/10.1137/S003614450342480 doi: 10.1137/S003614450342480
    [6] T. Pereira, M. Baptista, J. Kurths, Detecting phase synchronization by localized maps: application to neural networks, EPL, 77 (2007), 40006. http://dx.doi.org/10.1209/0295-5075/77/40006 doi: 10.1209/0295-5075/77/40006
    [7] Z. Guan, Z. Liu, G. Feng, Y. Wang, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Trans. Circuits-I, 57 (2010), 2182–2195. http://dx.doi.org/10.1109/TCSI.2009.2037848 doi: 10.1109/TCSI.2009.2037848
    [8] S. Liu, F. Zhang, Complex function projective synchronization of complex chaotic system and its applications in secure communication, Nonlinear Dyn., 76 (2014), 1087–1097. http://dx.doi.org/10.1007/s11071-013-1192-1 doi: 10.1007/s11071-013-1192-1
    [9] W. Yu, J. Cao, G. Chen, J. Lu, J. Han, W. Wei, Local synchronization of a complex network model, IEEE Trans. Syst. Man Cy. B, 39 (2009), 230–241. http://dx.doi.org/10.1109/TSMCB.2008.2004964 doi: 10.1109/TSMCB.2008.2004964
    [10] X. Wu, W. Zheng, J. Zhou, Generalized outer synchronization between complex dynamical networks, Chaos, 19 (2009), 013109. http://dx.doi.org/10.1063/1.3072787 doi: 10.1063/1.3072787
    [11] J. Chen, J. Lu, X. Wu, W. Zheng, Generalized synchronization of complex dynamical networks via impulsive control, Chaos, 19 (2009), 043119. http://dx.doi.org/10.1063/1.3268587 doi: 10.1063/1.3268587
    [12] Y. Wu, C. Li, Y. Wu, J. Kurths, Generalized synchronization between two different complex networks, Commun. Nonlinear Sci., 17 (2012), 349–355. http://dx.doi.org/10.1016/j.cnsns.2011.04.026 doi: 10.1016/j.cnsns.2011.04.026
    [13] Y. Shen, X. Liu, Generalized synchronization of delayed complex-valued dynamical networks via hybrid control, Commun. Nonlinear Sci., 118 (2023), 107057. http://dx.doi.org/10.1016/j.cnsns.2022.107057 doi: 10.1016/j.cnsns.2022.107057
    [14] J. Zhou, J. Lu, J. Lu, Adaptive synchronization of an uncertain complex dynamical network, IEEE Tran. Automat. Contr., 51 (2006), 652–656. http://dx.doi.org/10.1109/TAC.2006.872760 doi: 10.1109/TAC.2006.872760
    [15] H. Ren, P. Shi, F. Deng, Y. Peng, Fixed-time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control, J. Franklin I., 357 (2020), 12308–12325. http://dx.doi.org/10.1016/j.jfranklin.2020.09.016 doi: 10.1016/j.jfranklin.2020.09.016
    [16] J. Feng, S. Sun, C. Xu, Y. Zhao, J. Wang, The synchronization of general complex dynamical network via pinning control, Nonlinear Dyn., 67 (2012), 1623–1633. http://dx.doi.org/10.1007/s11071-011-0092-5 doi: 10.1007/s11071-011-0092-5
    [17] Y. Liu, G. Zhang, J. Hu, Fixed-time stabilization and synchronization for fuzzy inertial neural networks with bounded distributed delays and discontinuous activation functions, Neurocomputing, 495 (2022), 86–96. http://dx.doi.org/10.1016/j.neucom.2022.04.101 doi: 10.1016/j.neucom.2022.04.101
    [18] C. Aouiti, H. Jallouli, Q. Zhu, T. Huang, K. Shi, New results on finite/fixed-time stabilization of stochastic second-order neutral-type neural networks with mixed delays, Neural Process. Lett., 54 (2022), 5415–5437. http://dx.doi.org/10.1007/s11063-022-10868-9 doi: 10.1007/s11063-022-10868-9
    [19] X. Liu, D. Ho, Q. Song, W. Xu, Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE Trans. Cybernetics, 49 (2019), 2398–2403. http://dx.doi.org/10.1109/TCYB.2018.2821119 doi: 10.1109/TCYB.2018.2821119
    [20] W. Zhang, C. Li, T. Huang, J. Huang, Fixed-time synchronization of complex networks with nonidentical nodes and stochastic noise perturbations, Physica A, 492 (2018), 1531–1542. http://dx.doi.org/10.1016/j.physa.2017.11.079 doi: 10.1016/j.physa.2017.11.079
    [21] J. Hu, G. Sui, X. Li, Fixed-time synchronization of complex networks with time-varying delays, Chaos Soliton. Fract., 140 (2020), 110216. http://dx.doi.org/10.1016/j.chaos.2020.110216 doi: 10.1016/j.chaos.2020.110216
    [22] M. Abudusaimaiti, A. Abdurahman, H. Jiang, C. Hu, Fixed/predefined-time synchronization of fuzzy neural networks with stochastic perturbations, Chaos Soliton. Fract., 154 (2022), 111596. http://dx.doi.org/10.1016/j.chaos.2021.111596 doi: 10.1016/j.chaos.2021.111596
    [23] A. Abdurahman, M. Abudusaimaiti, H. Jiang, Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations, Appl. Math. Comput., 444 (2023), 127811. http://dx.doi.org/10.1016/j.amc.2022.127811 doi: 10.1016/j.amc.2022.127811
    [24] F. Kong, H. Ni, Q. Zhu, C. Hu, T. Huang, Fixed-time and predefined-time synchronization of discontinuous neutral-type competitive networks via non-chattering adaptive control strategy, IEEE Trans. Netw. Sci. Eng., 10 (2023), 3644–3657. http://dx.doi.org/10.1109/TNSE.2023.3271109 doi: 10.1109/TNSE.2023.3271109
    [25] L. Zhou, H. Lin, F. Tan, Fixed/predefined-time synchronization of coupled memristor-based neural networks with stochastic disturbance, Chaos Soliton. Fract., 173 (2023), 113643. http://dx.doi.org/10.1016/j.chaos.2023.113643 doi: 10.1016/j.chaos.2023.113643
    [26] J. Yang, G. Chen, S. Zhu, S. Wen, J. Hu, Fixed/prescribed-time synchronization of BAM memristive neural networks with time-varying delays via convex analysis, Neural Networks, 163 (2023), 53–63. http://dx.doi.org/10.1016/j.neunet.2023.03.031 doi: 10.1016/j.neunet.2023.03.031
    [27] G. Zhang, J. Cao, New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: non-reduced order approach, Appl. Math. Comput., 440 (2023), 127671. http://dx.doi.org/10.1016/j.amc.2022.127671 doi: 10.1016/j.amc.2022.127671
    [28] X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simulat., 203 (2023), 647–668. http://dx.doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010
    [29] X. Li, H. Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–397. http://dx.doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051
    [30] L. Liu, X. Ding, W. Zhou, Prescribed-time cluster synchronization of uncertain complex dynamical networks with switching via pinning control, Neurocomputing, 419 (2020), 136–147. http://dx.doi.org/10.1016/j.neucom.2020.08.043 doi: 10.1016/j.neucom.2020.08.043
    [31] L. Liu, W. Zhou, C. Huang, Finite/prescribed-time cluster synchronization of complex dynamical networks with multiproportional delays and asynchronous switching, IEEE Trans. Syst. Man Cy.-S., 53 (2023), 3683–3694. http://dx.doi.org/10.1109/TSMC.2022.3230348 doi: 10.1109/TSMC.2022.3230348
    [32] J. Xiao, Y. Hu, Z. Zeng, A. Wu, S. Wen, Fixed/predefined-time synchronization of memristive neural networks based on state variable index coefficient, Neurocomputing, 560 (2023), 126849. http://dx.doi.org/10.1016/j.neucom.2023.126849 doi: 10.1016/j.neucom.2023.126849
    [33] D. Ruan, S. Yang, W. Zhang, Fixed/predefined-time synchronization on complex networks in the light of T-S fuzzy system, IFAC J. Syst. Control, 24 (2023), 100216. http://dx.doi.org/10.1016/j.ifacsc.2023.100216 doi: 10.1016/j.ifacsc.2023.100216
    [34] Q. Zhang, G. Chen, L. Wan, Exponential synchronization of discrete-time impulsive dynamical networks with time-varying delays and stochastic disturbances, Neurocomputing, 309 (2018), 62–69. http://dx.doi.org/10.1016/j.neucom.2018.04.070 doi: 10.1016/j.neucom.2018.04.070
    [35] X. Wang, X. Liu, K. She, S. Zhong, L. Shi, Delay-dependent impulsive distributed synchronization of stochastic complex dynamical networks with time-varying delays, IEEE Trans. Syst. Man Cy.-S., 49 (2019), 1496–1504. http://dx.doi.org/10.1109/TSMC.2018.2812895 doi: 10.1109/TSMC.2018.2812895
    [36] W. Li, L. Zhao, H. Shi, D. Zhao, Y. Sun, Realizing generalized outer synchronization of complex dynamical networks with stochastically adaptive coupling, Math. Comput. Simulat., 187 (2021), 379–390. http://dx.doi.org/10.1016/j.matcom.2021.03.001 doi: 10.1016/j.matcom.2021.03.001
    [37] P. Drazin, Nonlinear systems, Cambridge: Cambridge University Press, 1992.
    [38] J. Yu, S. Yu, J. Li, Y. Yan, Fixed-time stability theorem of stochastic nonlinear systems, Int. J. Control, 92 (2019), 2194–2200. http://dx.doi.org/10.1080/00207179.2018.1430900 doi: 10.1080/00207179.2018.1430900
    [39] A. Abdurahman, H. Jiang, C. Hu, Improved fixed-time stability results and application to synchronization of discontinuous neural networks with state-dependent switching, Int. J. Robust Nonlin., 31 (2021), 5725–5744. http://dx.doi.org/10.1002/rnc.5566 doi: 10.1002/rnc.5566
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(748) PDF downloads(111) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog