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Abstract: In this paper, the fixed/predefined-time generalized synchronization problem of stochastic
complex dynamical networks with delays is studied for the first time. First, based on the feedback
controller without linear terms, the results show that the controlled system has strong stability. Second,
stochastic analysis methods, inequality techniques, and an extension of the existing fixed/predefined-
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1. Introduction

With the continuous advancement of science and technology, complex dynamical networks (CDNs)
have become a research hotspot in recent years. CDNs are composed of edges and nodes, each of
which exhibits complex dynamical behaviors. Many real-world networks can be modeled by CDNs,
such as the internet [1], social networks [2], and so on. In addition, CDNs are widely used in various
fields, such as physics, engineering, and automatic control [3–5].

Synchronization is a common non-linear phenomenon between CDNs. Its has been a subject
of study since Huygens’s pendulum experiment in 1655. Synchronization has potential application
value in many aspects, such as information transmission [6], pattern recognition [7], and secure
communication [8]. Therefore, more and more scholars pay attention to synchronization between
systems [9]. The phenomenon of synchronization can occur inside or outside of the systems, which is
called “inside synchronization” or “outside synchronization”. Generalized synchronization (GS), as a
typical external synchronization, is realized by mapping nonlinear smooth vector functions to the drive

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2024266


5483

system and the response system [10]. In [11], Chen et al. realized the GS of CDNs by using impulsive
control methods. In [12], the GS of CDNs with different dimensions and nodes was explored. In
addition, some scholars have extended it to the field of complex numbers. Shen et al. explored the GS
of delayed complex-valued dynamical networks (DCVDNs) by using hybrid controllers in [13].

It is worth noting that, due to the complexity of the structures of networks, oscillation and chaos
will occur in system. Therefore, many researchers have created viable controllers to synchronize the
networks, such as distributed impulsive control, adaptive control, and pinning control, etc. In [7],
Guan et al. realized the synchronization of CDNs through distributed impulsive control. In [14], Zhou
et al. investigated local and global adaptive synchronization of uncertain CDNs with time-varying
delays by using an adaptive controller. In [15], Ren et al. explored fixed-time synchronization (FTS)
of DCVDNs with random perturbations under impulsive pinning control. In [16], Feng et al. discussed
pinning synchronization in general CDNs through pinning control strategies.

In practical applications, people often hope that the controlled system can achieve the expected
goal within fixed time or predefined time, to reduce the control cost. Fixed-time is determined
based on the designed controller parameters and is independent of the initial system values. To our
delight, there have been many reports on fixed-time synchronization results. In [17, 18], the fixed time
stabilization and synchronization of neural networks is studied. The FTS of complex networks with
random noise is explored by using pinning control [19, 20]. Hu et al. explored the FTS of complex
networks with time delays [21]. Predefined-time is determined solely by the actual requirements of
the systems, and is not influenced by any initial values or parameters. In [22], the authors studied the
synchronization of fuzzy neural networks by designing a controller that does not contain linear terms,
and obtained sufficient conditions for FTS and predefined-time synchronization (PDTS). In addition,
some scholars have extended single-layer networks to double-layer networks. In [23], the authors
explored the FTS/PDTS of complex-valued BAM neural networks. In [24], the authors used a non-
jitter adaptive control strategy to realize the FTS/PDTS of discontinuous neutral competitive networks.
For further interesting results, see [25–29]. The research of general synchronization is implemented
on the basis of infinite running time, but FTS/PDTS can greatly reduce the running time, thus reducing
the control cost. Synchronization within a fixed/predefined time reduces control cost. In [30], Liu et al.
explored the cluster synchronization of uncertain CDNs in prescribed-time by using a pinning control
technique. In [31], the problem of finite/prescribed-time cluster synchronization for switching CDNs
with proportional delays is studied by using pinning control. In [32], Xiao et al. studied FTS/PDTS
of memory neural networks based on state variable index coefficients. In [33], Ruan et al. studied the
FTS/PDTS on complex networks in light of the T-S fuzzy system. In real networks, delays and random
noise interference are not negligible, so it is necessary to discuss FTS/PDTS between SCDNs with
delays. This is one of the motivations for this article.

As we know, due to the limited information transmission speed and processing time between
systems, the system will inevitably have time delays and random disturbances. The existence of
disturbance factors will cause the system to lose stability [34]. In practical scenarios, the nodes
or endpoints of complex networks may have delays, which brings complexity into the analysis of
complex networks. Random noise will cause the system to lose synchronization. In recent years,
many researchers have developed a keen interest in the synchronization of CDNs with stochastic
perturbations. In [35], the synchronization of stochastic CDNs (SCDNs) with time delays is discussed.
In [36], Li et al. explored the synchronization of SCDNs by using adaptive coupling control methods.
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In [20], Zhang et al. explored the FTS of complex networks with nonidentical nodes and random
perturbations. The above works consider general synchronization rather than GS between CDNs with
delays and random perturbations. GS is the extension of general synchronization, so this is an second
driving force of this paper.

This paper is devoted to the FTGS/PDTGS of SCDNs with delays.
1). In this paper, the synchronization of CDNs with time delays and random disturbances is considered.
If time delays and random disturbances are not considered, the networks may not be able to accurately
describe the dynamic relationship between nodes. Therefore, considering the time delays and random
disturbances, the real network’s model can be truly described.
2). Compared with previous literature [22, 23], this paper extends the FTSt lemma of stochastic
systems, so that the system ST is not subject to η. Therefore, the results of this paper are more general.
3). By designing a feedback controller without linear terms, the SCDNs can achieve fixed/predefined
time synchronization.
4). The sufficient conditions for synchronization of the SCDNs are derived by using stochastic analysis
methods and inequality techniques.

The structure of this paper is as follows: Section II introduces the models, controllers, definitions,
theorems, and lemmas. Section III derives the sufficient conditions for achieving the FTGS/PDTGS of
SCDNs. Section IV provides an example. Finally, we provide a conclusion for this paper.

2. Preliminaries and model

2.1. Notation

Let || ∗ || be the Euclidean norm. If P is a matrix, its transpose is expressed as PT . If P is a
symmetric matrix, its maximum and minimum eigenvalues are expressed as λmax(P) and λmin(P).
⊗ is the Kronecker product. ωi is the Brownian motion defined on a complete probability space
(Ω,F , {Ft}t≥0 ,P). PC([−ϑ, 0],RM) is a set of functions ϕ1 : ([ϑ, 0],RM) continuous everywhere.

2.2. Problem formulation

Consider the following mathematical model of SCDNs with delays:

dψi(t) =

[
Θi(t, ψi(t − ϑ1)) +

M∑
j=1

bi jAψ j(t) +

M∑
j=1

�i j Aψ j(t − ϑ2)
]
dt

+ `i(t, ψi(t))dωi(t), i = 1, 2, . . . ,M,

(2.1)

where ψi(t) = (ψi1(t), ψi2(t), . . . , ψiM(t))T ∈ RM is the state vector of the i-th node, Θi : RM × RM → RM

is the activation function, and ϑ1 and ϑ2 represent the internal delays and the transmission delays,
respectively. A ∈ RM×M,V = (bi j)M×M ∈ RM×M and Y = (�i j)M×M ∈ RM×M are coupling matrices, where
bi j(�i j) is defined as follows: from node i to j (i , j), then the coupling strength bi j , 0 (�i j, 0);
otherwise, bi j = 0 (�i j= 0), and the matrices V and Y satisfy

bii = −

M∑
j=1, j,i

bi j, �ii= −

M∑
j=1, j,i

�i j, i = 1, 2, . . . ,M.
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`i denotes the noise intensity function. Suppose the initial value of system (2.1) is ψi(t) = ϕi(t) ∈
PC([−ϑ, 0],RM), t ∈ [−ϑ, 0], and ϑ = max {ϑ1, ϑ2}.

Remark 1. Because CDNs typically consist of many interconnected nodes, the relationships between
these nodes change over time. If time delays and random disturbances are not considered, the model of
networks may not be able to accurately describe the dynamic relationship between nodes. For example,
in the intelligent transportation system, the communication between vehicles needs to consider time
delays and random disturbances to ensure that the information transmission between vehicles is
reliable. If delays and random perturbations are ignored, they can lead to communication failures
between vehicles, affecting traffic flow and safety.

Select system (2.1) as the master system. Then, the slave system can be described as

dpi(t) =J−1
ϕi

[
Θi(t, ϕi pi(t − ϑ1)) +

M∑
j=1

bi jAϕi p j(t) +

M∑
j=1

�i j Aϕi p j(t − ϑ2) + Ki(t)
]
dt

+ J−1
ϕi

[
`i(t, ϕi pi(t))

]
dωi(t), i = 1, 2, . . . ,M,

(2.2)

where pi(t) = (pi1(t), pi2(t), . . . , piM(t))T ∈ RM, Ki(t) is the controller. Denote pi(t) = ψi(t) ∈
PC([−ϑ, 0],RM), t ∈ [−ϑ, 0] as initial condition of system (2.2). Let ϕi = (ϕi1, ϕi2, . . . , ϕiM) ∈ RM

and the Jacobian matrix of ϕi(pi(t)) is given by:

J(ϕi) =


∂ϕi1(pi1)
∂pi1

∂ϕi1(pi1)
∂pi2

. . . ∂ϕi1(pi1)
∂piM

∂ϕi2(pi2)
∂pi1

∂ϕi2(pi2)
∂pi2

. . . ∂ϕi2(pi2)
∂piM

...
...

. . .
...

∂ϕiM(piM)
∂pi1

∂ϕiM(piM)
∂pi2

. . . ∂ϕiM(piM)
∂piM

 .

Let ~i(t) = ψi(t) − ϕpi(t). The error systems can be described as follows:

d~i(t) =

[
Θi(t, ~i(t − ϑ1)) +

M∑
j=1

bi jA~ j(t) +

M∑
j=1

�i j A~ j(t − ϑ2) + Ki(t)
]
dt

+ `i(t, ~i(t))dωi(t), i = 1, 2, . . . ,M,

(2.3)

where Θi(t, ~i(t − ϑ1)) = Θi(t, ψi(t − ϑ1)) − Θi(t, ϕi(pi(t − ϑ1))).
To achieve FTGS in systems (2.1) and (2.2), the controller is designed in the following manner:

Ki(t) = − sign(~i(t))(λ1|~i(t)|ι + λ2|~i(t)|β), (2.4)

where λ1 > 0, λ2 > 0, ι > 1, 0 < β < 1. sign(·) is the sign function.

Remark 2. Compared with [13], we further consider the effect of external random noise on the system.
In addition, the controller in this paper does not contain linear terms, so the results obtained are more
general.
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Substituting controller (2.4) into the error system (2.3), we get

d~i(t) =

[
Θi(t, ~i(t − ϑ1)) +

M∑
j=1

bi jA~ j(t) +

M∑
j=1

�i j A~ j(t − ϑ2)

− sign(~i(t))
(
λ1|~i(t)|ι + λ2|~i(t)|β

)]
dt + `i(t, ~i(t))dωi(t),

~i(t) =ϕi(t) − ψi(t) ∈ PC([−ϑ, 0],RM), t ∈ [−ϑ, 0], i = 1, 2, . . . ,M.

(2.5)

Remark 3. The phenomenon of synchronization refers to the existence of multiple interrelated
components or processes in a system, which can maintain the same or similar state. Studying
synchronization can help us better understand complex behaviors in nature, such as communication
systems. It is worth noting that, when studying synchronization phenomena, we need to consider the
stability of the error system. By studying the stability of error system, we can understand the degree
of influence of error on system synchronization, so as to design a more stable and reliable system.
That is, the synchronization of systems (2.1) and (2.2) can be translated into the stability of the error
system (2.5).

We now present the necessary definitions, assumptions, and lemmas.

Definition 1. CDNs (2.1) and (2.2) can realize the GS if

lim
t→+∞

E||ψi(t) − ϕi(pi(t))|| = 0,

E||ψi(t) − ϕi(pi(t))|| ≡ 0, t ≥ Tε, i = 1, 2, . . . ,M,

where ϕi : RM → RM is a holomorphic map with an inverse map ϕ−1
i , and Tε is the settling time (ST).

Remark 4. In Definition 1, if ϕi(pi(t)) = ρpi(t), ρ ∈ R, called projective synchronization. If
ϕi(pi(t)) = pi(t), it is called fully synchronization. If ϕi(pi(t)) = −pi(t), it is called anti-synchronization.
If ϕi(pi(t)) = pi(t − σ), it is called lag synchronization, where σ is time lag.

Assumption 1. For ∀ψ, p ∈ RM, suppose that ∃li > 0, satisfies the Lipschitz condition and∣∣∣Θi(t, ψ(t)) − Θi(t, p(t))
∣∣∣ ≤ li

∣∣∣ψ(t) − p(t)
∣∣∣

holds.
Assumption 2. For ∀z1, z2 ∈ RM, and the noise function `i(t, z1, z2), and ∃µi > 0, satisfying[

`i(t, z1) − `i(t, z2)
]T [
`i(t, z1)−`i(t, z2)

]
≤ µi(z1 − z2)T (z1 − z2),

where `i(t, 0) ≡ 0, i = 1, 2, . . . ,M.
The main results are obtained through the following lemma.

Lemma 1. [37] Let ki ≥ 0 (i = 1, 2, . . . ,M), 0 < r < 1, % > 1. Then, the following inequalities hold:

M∑
i=1

kr
i ≥

( M∑
i=1

ki

)r

,

M∑
i=1

k%i ≥ m1−%
( M∑

i=1

ki

)%
.
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To obtain the main results presented in the next section, we introduce some necessary concepts
regarding stochastic differential equations.

Given is a stochastic nonlinear network in consideration [18]:

dψ(t) = Θ(t, ψ(t)) + Θ1(t, ψ(t))dω(t), ψ(0) = 0, t ≥ 0 (2.6)

with
(i). ψ(t) ∈ RM is the state of (2.6),
(ii). Continuous function Θ : RM → RM and Θ1 : RM → RM×M satisfy Θ(t, 0) = 0 and Θ1(t, 0) = 0,

respectively,
(iii). ω(t) is the Brownian motion.
Denoted by ψ(t, ψ0) is the root of (2.6) with initial condition ψ0. When t ≥ T , ψ(t, ψ0) = 0, and the

ST function is given by
T (ψ0, ω) = inf {T ≥ 0} .

Definition 2. Suppose C2,1(RM×R+,R+) is the family of all non-negative functions V on RM×R+ which
are continuously twice differentiable in ψ and once differentiable in t. For V ∈ C2,1(RM×R+,R+), define
the operator LV related to system (2.6) given by

LV(ψ(t)) =
∂V
∂t

+
∂V
∂ψ(t)

Θ(t, ψ(t)) +
1
2

trace
[
ΘT

1 (t, ψ(t))
∂2V

∂(ψ(t))2 Θ1(t, ψ(t))
]
. (2.7)

Definition 3. [18] Assume the following conditions hold:
(i). limt→Tε ||E(ψ(t))||2 = 0.
(ii). ||ψ(t)||2 ≡ 0 for t ≥ Tε.
Then, system (2.6) is said to be globally stochastically FTSt.

Definition 4. [38] System (2.6) can achieve stochastic FTSt in probability, if ∃Tε > 0,Tmax > 0, such
that, ∀ζ̄(s), s ∈ [t0 − ϑ, t0] and

(i). The origin achieves global stochastic FTSt in probability.
(ii). The mean value of ST function T (ζ̄(s), ω) is independent of the initial value of the network, and

its upper bound is bounded by Tmax > 0. That is,

E(T (ζ̄(s), ω)) = Tε < Tmax.

Lemma 2. [38] Let V : RM → R+ be a nonnegative definite and radially unbounded function, and
η1 > 0, η2 > 0, ι > 1, 0 < β < 1, satisfying,

LV(ψ(t)) ≤ ηV(ψ(t)) − η1Vι(ψ(t)) − η2Vβ(ψ(t)), ψ(t) ∈ RM\ {0} .

Then, network (2.6) is FTGS, and the ST can be estimated as

Tε=̇


T 1
ε = 1

ητ(1−ι) ln
(
1 − η

η2

(
η

b

)τ)
, η < 0,

T 2
ε = π

(ι−β)η2

( η
η2

)τcsc(τπ), η = 0,

T 3
ε =

πcsc(τπ)
η1(ι−β)

(
η1
η2−η

)1−τ

I
(
η1
γ
, τ, 1 − τ

)
+

πcsc(τπ)
η2(ι−β)

(
η2
η1−η

)τ
I
(
η2
γ
, 1 − τ, τ

)
, 0 < η < min {η1, η2} ,
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where τ =
1−β
ι−β
, γ = η1+η2−η. When ι+β = 2, the ST can be more accurately estimated as T (ψ,ω) < T̃ε,

where

T̃ε=̇


T 4
ε = 1

(ι−1)
√
−∆

ln η+
√
−∆

η−
√
−∆
, η < −2

√
η1η2,

T 5
ε = 2

η(β−1) , η = −2
√
η1η2,

T 6
ε = 2

(ι−1)
√

∆

(
π
2 + arctan

(
η
√

∆

))
, −2

√
η1η2 < η < 2

√
η1η2,

where ∆ = 4η1η2 − η
2.

Lemma 3. Let V : RM → R+ be a nonnegative definite and radially unbounded function, and η1 > 0,
η2 > 0, ι > 1, 0 < β < 1, satisfying,

LV(ψ(t)) ≤ ηV(ψ(t)) − η1Vι(ψ(t)) − η2Vβ(ψ(t)), ψ(t) ∈ RM\ {0} .

If ι + β = 2, η > 2
√
η1η2, then network (2.6) is FTGS, and the ST can be estimated as

T̃ε=̇T 7
ε =

1

(ι − 1)
√

∆
ln

∣∣∣∣∣
√
−∆ − η
√
−∆ + η

∣∣∣∣∣.
Proof. Similar to the proof in [39], we choose the following integral function:

F(V)=̇
∫ V

0

1

ηw1 − η1wι
1 − η2wβ

1

dw1.

Now, we use variable substitution, which is w = wγ−1
1 , when η > 2

√
η1η2, and we get

F(V) ≤
∫ +∞

0

1

ηw1 − η1wι
1 − η2wβ

1

dw1

=
1

γ − 1

∫ +∞

0

1
−η2w2 + ηw + η1

dw

=
1

η(γ − 1)

∫ +∞

0

1

η2−4η1η2

4η2
2
−

(
w − η

2η2

)2 dw.

If η > 2
√
η1η2, then η2 − 4η1η2 > 0, and one has

F(V) ≤
1

η(γ − 1)

∫ +∞

0

1

η2−4η1η2

4η2
2
−

(
w − η

2η2

)2 dw

=
1

(γ − 1)
√
−∆

ln
∣∣∣∣∣
√
−∆ − η
√
−∆ + η

∣∣∣∣∣.
The proof is complete. �

Remark 5. In [22, 23], η is restricted to η < 2
√
η1η2. In Lemma 2 of this paper, we further extend

the constraint on η to η > 2
√
η1η2 and prove it by constructing integral functions. In comparison to

the current findings, Lemma 3 in this paper has wider applicability. The system can better cope with
diversity and complexity, and thus be more stable and reliable.
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Lemma 4. [38]. Let V(ψ) be a C-regular function on RM → R that satisfies the following inequality:

LV(ψ(t)) ≤
T̃
Td

(
ηV(ψ(t)) − η1Vι(ψ(t))−η2Vβ(ψ(t))

)
, ψ(t) ∈ RM\ {0} ,

where η < min {η1, η2}. Then, system (2.3) is FTS within PDTS Td > 0, where

T̃ =̇

{
Tε, ι + β , 2,
T̃ε, ι + β = 2.

3. Main results

Now, we will discuss the FTGS/PDTGS of SCDNs with delays. Based on the controller (2.4), the
error system (2.5) to achieve the FTGS is our main control objective.

3.1. Fixed-time generalized synchronization

Denote ηi = L + λmax
(
2||V ⊗ A|| + ||Y ⊗ A||

)
+ µi, and in the controller (2.4) will get the following

results.

Theorem 1. Let Assumptions 1 and 2 hold. Then, CDNs (2.1) and (2.2) can be realized FTGS under
controller (2.4), if the following conditions are satisfied:

L + λmax||Y ⊗ A|| ≤ 0, (3.1)

max {ηi} < min
{
λ̆1, 2λ2

}
, (3.2)

where L = max {li}, η = max {ηi}, λ1 > 0, λ2 > 0, and λ̆1 = λ1(Mm)
1−ι
2 , and the ST is estimated by Tε

defined in Lemma 2.

Proof. Select the Lyapunov function as follows:

V(t) =

M∑
i=1

~T
i (t)~i(t).

The operator L defined in (2.7) onto the derivative of V in system (2.5) can be computed as

LV(t) =2
M∑

i=1

~T
i (t)

[
Θi(t, ~i(t − ϑ1)) +

M∑
j=1

bi jA~ j(t) +

M∑
j=1

�i j A~ j(t − ϑ2) − sign(~i(t))

×
(
λ1|~i(t)|ι + λ2|~i(t)|β

)]
+

M∑
i=1

trace
[
`T

i (t, ~i(t))`i(t, ~i(t))
]
.

(3.3)

From Assumption 1,

2
M∑

i=1

~T
i (t)Θi(t, ~i(t − ϑ1)) ≤ 2

M∑
i=1

li~
T
i (t) ~i(t − ϑ1) ≤ 2L

M∑
i=1

~T
i (t) ~i(t − ϑ1), (3.4)
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where L = max {li} , i = 1, 2, . . . ,M.
Furthermore, based on the definition of bi j and �i j, we have

2
M∑

i=1

~T
i (t)

M∑
j=1

bi jA~ j(t) ≤ 2~T (t)(V ⊗ A)~(t) ≤ 2λmax(V ⊗ A)
M∑

i=1

~T
i (t)~ j(t), (3.5)

and

2
M∑

i=1

~T
i (t)

M∑
j=1

�i j A~ j(t − ϑ2) ≤ 2~T (t)(Y ⊗ A)~(t − ϑ2) ≤ 2λmax(Y ⊗ A)
M∑

i=1

~T
i (t)~ j(t − ϑ2). (3.6)

From Lemma 1,

− 2
M∑

i=1

~T
i (t)sign(~i(t))λ1|~i(t)|ι ≤ −2λ1(Mm)

1−ι
2

( M∑
i=1

M∑
j=1

|~i j(t)|2
) 1+ι

2

, (3.7)

− 2
M∑

i=1

~T
i (t)sign(~i(t))λ2|~i(t)|β = −2λ2

M∑
i=1

|~i j(t)|1+β ≤ −2λ2

( M∑
i=1

M∑
j=1

|~i j(t)|2
) 1+β

2

. (3.8)

Based on Assumption 2,
M∑

i=1

trace
[
`T

i (t, ~i(t))`i(t, ~i(t))
]
≤

M∑
i=1

µi~
2
i (t). (3.9)

Substituting (3.4)–(3.9) into (3.3),

LV(t) ≤2L
M∑

i=1

||~T
i (t)|| ||~i(t − ϑ1)|| + 2λmax||(V ⊗ A)||

M∑
i=1

||~T
i (t)|| ||~ j(t)||

+ 2λmax||(Y ⊗ A)||
M∑

i=1

||~T
i (t)|| ||~ j(t − ϑ2)||

− 2λ1(Mm)
1−ι
2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+ι

2

− 2λ2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+β

2

+ µi

M∑
i=1

||~T
i (t)|| ||~i(t)||.

(3.10)

From (3.10),

LV(t) ≤2L
M∑

i=1

||~T
i (t)|| ||~i(t − ϑ1)|| +

(
2λmax||(V ⊗ A)|| + µ1

) M∑
i=1

||~T
i (t)|| ||~i(t)||

+

(
2λmax||(Y ⊗ A)||

) M∑
i=1

||~T
i (t)|| ||~ j(t − ϑ2)||

− 2λ1(Mm)
1−ι
2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+ι

2

− 2λ2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+β

2

.

(3.11)
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By utilizing the Cauchy-Schwarz inequality,

LV(t) ≤
(
L + λmax

(
2||V ⊗ A|| + ||Y ⊗ A||

)
+ µ1

) M∑
i=1

||~T
i (t)||2

+ L
M∑

i=1

||~T
i (t − ϑ1)||2 +

(
λmax||Y ⊗ A||

) M∑
i=1

||~T
i (t − ϑ2)||2

− 2λ1(Mm)
1−ι
2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+ι

2

− 2λ2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+β

2

≤

(
L + λmax

(
2||V ⊗ A|| + ||Y ⊗ A||

)
+ µi

)
V(t)

+

(
L + λmax||Y ⊗ A||

)
sup

s∈[−ϑ,0]
V(t + s)

− 2λ1(Mm)
1−ι
2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+ι

2

− 2λ2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+β

2

.

(3.12)

Let η̂ = L + λmax||Y ⊗ A|| ≤ 0, that is, under conditions (3.1) and (3.2) of Theorem 1, one has

LV(t) ≤ ηiV(t) − 2λ1(Mm)
1−ι
2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+ι

2

− 2λ2

( M∑
i=1

M∑
j=1

||~i j(t)||2
) 1+β

2

≤ ηV(t) − 2λ̆1V
1+ι
2 (t) − 2λ2V

1+β
2 (t).

(3.13)

If (3.1) and (3.2) hold, then V(t) → 0, (t → ∞), which means that ||~i(t)|| → 0, (t →
∞), i=1, 2, . . . ,M. Based on Lemmas 2 and 3, CDN (2.5) is FTGS and the ST can be derived from
Lemma 2.

The proof is finished. �

Remark 6. Using Lemmas 2 and 3, the FTGS/PDTGS of SCDNs with real domain delays are discussed.
The work in this paper is a complementary extension of reference [13]. It provides a good basis for
considering the FTGS/PDTGS of DCVDNs with random impulsive disturbance in the next stage.

Corollary 1. Let Assumptions 1 and 2 and inequality (3.2) hold. If ι + β = 2 and η > 2
√
η1η2, then

systems (2.1) and (2.2) can be FTGS with the ST T̃ε defined in Lemma 2.

When the error system gradually approaches zero, the system may fluctuate due to the presence of
a sign function in the controller (2.4). In order to avoid such fluctuations, a continuous controller will
be used below to achieve the FTS of systems (2.1) and (2.2).

Ki(t) = −λ1~
ι1
ι2
i (t) − λ2~

β1
β2
i (t), (3.14)

where λ1 ≥ 0, λ2 ≥ 0, ι1, ι2, β1, β2 are integers satisfying ι1 < ι2, β1 > β2. So, we have the following
Corollary 2.
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Corollary 2. Let Assumptions 1 and 2 and inequality (3.2) hold. Then, systems (2.1) and (2.2) can be
FTGS under controller (3.14), with the ST Tε defined in Lemma 2. If ι1

ι2
+

β1
β2

= 2 and η > 2
√
η1η2,

then systems (2.1) and (2.2) can be FTGS under controller (3.14), with the ST T̃ε, where, η1 = 2λ1,

η2 = 2λ2M
β2−β1

2β2 , ι = ι1+ι2
2ι2
, β =

β1+β2
2β2

. The remaining symbols are explained in Theorem 1.

Proof. Similar to Theorem 1, the Lyapunov function is constructed as V(t) =
∑M

i=1 ~
T
i (t)~i(t), and one

has

LV(t) =2
M∑

i=1

~T
i (t)

[
Θi(t, ~i(t − ϑ1)) +

M∑
j=1

bi jA~ j(t) +

M∑
j=1

�i j A~ j(t − ϑ2)

− λ1~
ι1
ι2
i (t) − λ2~

β1
β2
i (t)

]
dt +

M∑
i=1

trace
[
`T

i (t, ~i(t))`i(t, ~i(t))
]
.

(3.15)

From Lemma 1,

2
M∑

i=1

~T
i (t)

[
− λ1~

ι1
ι2
i (t)

]
≤ −2 min {λ1}

M∑
i=1

~
ι1+ι2
ι2

i (t) = −2λ1

M∑
i=1

(~2
i (t))

ι1+ι2
2ι2

≤ −2λ1

( M∑
i=1

~T
i (t)~i(t)

) ι1+ι2
2ι2

= −2λ1V
ι1+ι2

2ι2 (t),

(3.16)

and

2
M∑

i=1

~i(t)
[
− λ2~

β1
β2
i (t)

]
≤ −2 min {λ2}

M∑
i=1

~
β1+β2
β2

i (t) = −2λ2

M∑
i=1

(~2
i (t))

β1+β2
2β2

≤ −2λ2M
β2−β1

2β2

( M∑
i=1

~T
i (t)~i(t)

) β1+β2
2β2

= −2λ2M
β2−β1

2β2 V
β1+β2

2β2 (t).

(3.17)

By combining (3.5)–(3.7), (3.10), (3.17), and (3.18), we can get

LV(t) ≤
(
L + λmax

(
2||V ⊗ A|| + ||Y ⊗ A||

)
+ µi

)
V(t)

+

(
L + λmax||Y ⊗ A||

)
sup

s∈[−ϑ,0]
V(t + s)

− 2λ1V
ι1+ι2

2ι2 (t) − 2λ2M
β2−β1

2β2 V
β1+β2

2β2 (t)

≤ηV(t) − 2λ1V
ι1+ι2

2ι2 (t) − 2λ2M
β2−β1

2β2 V
β1+β2

2β2 (t),

(3.18)

where η = max {ηi}.
According to Lemmas 2 and 3, systems (2.1) and (2.2) can achieve FTS under controller (3.14),

where ST can be estimated by Tε. �

3.1.1. Predefined-time generalized synchronization

In this section, we discuss the PDTS of systems (2.1) and (2.2) through some control methods. To
this end, we give the following controller:

Ki(t) = −
T̃
Td

(
λ1~

ι1
ι2
i (t) − λ2~

β1
β2
i (t)

)
, (3.19)
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where

T̃ =̇

 T́1,
ι1
ι2

+
β1
β2
, 2,

T̀2,
ι1
ι2

+
β1
β2

= 2,

where

T́1=̇

{
T 3
ε , i f 0 < η < min {η1, η2} and Td < T 3

ε ,

T̃ 2
ε , i f η < 0,

T́2=̇


T 4
ε , i f 0 < η < min {η1, η2} and Td < T 4

ε ,

T̃ 5
ε , i f η ≤ 0,

T̃ 7
ε , i f η > 0 and Td < T 7

ε .

Theorem 2. Let Assumptions 1 and 2 and inequality (3.2) hold, and when ι1
ι2

+
β1
β2
, 2 or η > 2

√
η1η2

when ι1
ι2

+
β1
β2
, 2, then systems (2.1) and (2.2) can be realized to be PDTGS by controller (3.19), and

the ST is Td.

Proof. Similarly to Corollary 2, we choose the Lyapunov function as V(t) =
∑M

i=1 ~
T
i (t)~i(t),

LV(t) ≤ηV(t) − 2λ1
T̃
Td

V
ι1+ι2

2ι2 (t) − 2λ2
T̃
Td

V
β1+β2

2β2 (t),

≤



T̃
Td

[
ηV(t) − η1Vι(t) − η2Vβ(t)

]
,

i f η > 0 and Td ≤ T̃ ,
T̃
Td

[
− η1Vι(t) − η2Vβ(t)

]
,

i f η ≤ 0.

(3.20)

The symbols are the same as in Corollary 2.
According to Lemma 4, systems (2.1) and (2.2) can implement PDTGS under controller (3.19). �

Remark 7. We know that sign functions in the controller cause the system to vibrate. In practical
engineering applications, system jitter may make the system more difficult to maintain and inevitably
increase the control. Therefore, in Corollary 2, we use a continuous feedback controller (3.19) to
effectively avoid system jitter.

4. Numerical example

To demonstrate the usefulness of FTGS and PDTGS strategies, an example is given in this section.
Example. Consider the following SCDNs with two nodes:

dψi(t) =

[
Θi(t, ψi(t − ϑ1)) +

2∑
j=1

bi jAψ j(t) +

2∑
j=1

�i j Aψ j(t − ϑ2)
]
dt + `i(t, ψi(t))dωi(t), i = 1, 2. (4.1)

Let Θ(t) = tanh(t), `i(ψ) = 0.4, ϑ1 = 0.150, ϑ2 = 1.070. Choose as A = 0.2I2, where I2 represents
the 2 × 2 identity matrix. B and C represent the external coupling configuration matrix without delays
and with delays, respectively, and can be expressed as

B = (bi j)2×2 =

[
−0.28 0

0 −0.01

]
,
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C = (�i j)2×2 =

[
−1 0
0 −1

]
,

where the initial values of system (4.1) are chosen as ψ1(t) = −0.15, ψ2(t) = 1.15. Figure 1 shows the
state of system (4.1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-1

0

1

Figure 1. Trajectory state of the drive system (4.1) under controller (2.4).

Remark 8. CDNs often change with the change of time and environment in practical applications,
so the control strategy is very important. The stability of the drive system (4.1) under the feedback
controller (2.4) is shown in Figure 1. The greater the control intensity over time, the faster the system
tends to stabilize.

System (4.1) is the master system, and the corresponding slave system is

dpi(t) =J−1
ϕi

[
Θi(t, ϕi pi(t − ϑ1)) +

2∑
j=1

bi jAϕi p j(t) +

2∑
j=1

�i j Aϕi p j(t − ϑ2) + Ki(t)
]
dt

+ J−1
ϕi

[
`i(t, ϕi pi(t))

]
dωi(t), i = 1, 2,

(4.2)

where the symbols are defined in systems (2.1) and (2.2). The map ϕi is defined as follows:

ϕi(pi) = (pi1, 2pi2 + 1,
1
2

p2
i3 + 2)T , i = 1, 2.

Then, the inverse map is

ϕ−1
i (pi) =


1 0 0
0 2 0
0 0 ψi3

 .
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The feedback controller is

Ki(t) = − sign(~i(t))(λ1|~i(t)|ι + λ2|~i(t)|β), (4.3)

where ~i(t) = ψi(t) − ϕpi(t), i = 1, 2, and ϕi(t) is the Jacobian matrix defined in (2.2). The error system
of systems (4.2) and (4.3) is

d~i(t) =

[
Θi(t, ~i(t − ϑ1)) +

2∑
j=1

bi jA~ j(t) +

2∑
j=1

�i j A~ j(t − ϑ2)

− sign(~i(t))
(
λ1|~i(t)|ι + λ2|~i(t)|β

)]
dt + `i(t, ~i(t))dωi(t),

~i(t) =ψi(t) − ϕpi(t) ∈ PC([−ϑ, 0],R2), t ∈ [−ϑ, 0], i = 1, 2.

(4.4)

Let η1 = 6.032, η2 = 8.202,
∣∣∣Θ(t, ψ(t)) − Θ(t, p(t))

∣∣∣ ≤ ∣∣∣ψ(t) − p(t)
∣∣∣, that is, li = 1, and select µ = 0.5,

satisfying Assumptions 1 and 2. Due to η = max {η1, η2} = 8.202, λ1 = 3.1, λ2 = 3.1, ι = 0.01, β = 2.1,
and we satisfy inequality (3.2). Therefore, from Theorem 1, it can be concluded that systems (4.2)
and (4.3) can achieve FTGS and ST T 3

ε = 11.513. The synchronization error behavior of systems (4.2)
and (4.3) is shown in Figure 2. The ST T 1

ε can be easily calculated by MATLAB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 2. Error synchronization state in Theorem 1.

Figure 3 shows the evolution curve of ι = 0.9, β = 1.1 for systems (4.2) and (4.3) in Corollary 1.
Figure 4 shows the evolution curve of ι1 = 5, ι1 = 6, β1 = 7, β2 = 6 (i.e., ι1

ι2
+

β1
β2

= 2 ) for systems (4.2)
and (4.3) in Corollary 2. From Figure 5, the ST of the fixed time lemma generalized in this paper is
more accurate than that in the previous literature. Figure 6 illustrates the state of the error system (4.5)
when Td = 0.863, ι = 0.310, β = 0.611. The numerical results show that the estimated settlement
time in this paper is reasonable and more widely applicable, which provides theoretical support for the
analysis of complex systems.

Remark 9. In [22–27], the FTS/PDTS for η <
√
η1η2 is discussed. However, it will make the accuracy

of estimating ST more conservative. This paper further discusses the case of η >
√
η1η2, which

makes the results of this paper more general. It is more resistant to parameter disturbance, external
interference and uncertainty, more suitable for different situations and environments, and enhances the
robustness of the system.
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Figure 3. Error synchronization state in Corollary 1.
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Figure 4. Error synchronization state in Corollary 2.
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Figure 5. This paper generalizes ST T 7
ε .
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Figure 6. Error synchronization state in Theorem 2.

5. Conclusions

This paper focuses on the FTGS/PDTGS of SCDNs with delays, studied by a feedback controller
without linear terms. First, based on the fixed/predefined-time stability lemma of stochastic differential
equations, we optimize the ST of the system. Since there is no linear term in the controller, the
results of this paper are more general. In addition, we use an inequality technique to analyze the
fixed/predefined-time synchronization of CDNs for the first time, and derive sufficient conditions for
ensuring the FTGS/PDTGS of SCDNs. We believe that the findings of this research result provide
theoretical support for studying and creating complex networks. In the future, our work will further
analyze the GS of fractional order CDNS with reaction-diffusion terms or impulsive effects. At the
same time, we try to use less conservative Lipschitz conditions to study CDNs, making the network
more stable and thus easier to achieve synchronization.
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