Research article

Fast algorithms for nonuniform Chirp-Fourier transform

  • Received: 11 April 2024 Revised: 16 May 2024 Accepted: 23 May 2024 Published: 05 June 2024
  • MSC : 11F20, 11M20

  • The Chirp-Fourier transform is one of the most important tools of the modern signal processing. It has been widely used in the fields of ultrasound imaging, parameter estimation, and so on. The key to its application lies in the sampling and fast algorithms. In practical applications, nonuniform sampling can be caused by sampling equipment and other reasons. For the nonuniform sampling, we utilized function approximation and interpolation theory to construct different approximation forms of Chirp-Fourier transform kernel function, and proposed three fast nonuniform Chirp-Fourier transform algorithms. By analyzing the approximation error and the computational complexity of these algorithms, the effectiveness of the proposed algorithms was proved.

    Citation: Yannan Sun, Wenchao Qian. Fast algorithms for nonuniform Chirp-Fourier transform[J]. AIMS Mathematics, 2024, 9(7): 18968-18983. doi: 10.3934/math.2024923

    Related Papers:

  • The Chirp-Fourier transform is one of the most important tools of the modern signal processing. It has been widely used in the fields of ultrasound imaging, parameter estimation, and so on. The key to its application lies in the sampling and fast algorithms. In practical applications, nonuniform sampling can be caused by sampling equipment and other reasons. For the nonuniform sampling, we utilized function approximation and interpolation theory to construct different approximation forms of Chirp-Fourier transform kernel function, and proposed three fast nonuniform Chirp-Fourier transform algorithms. By analyzing the approximation error and the computational complexity of these algorithms, the effectiveness of the proposed algorithms was proved.



    加载中


    [1] Z. F. Xu, D. Liu, New methods and simulation for detecting low amplitude signals by nonuniform sampling, Foreign Electron. Meas. Technol., 2 (2007), 38–41. https://doi.org/10.19652/j.cnki.femt.2007.02.011 doi: 10.19652/j.cnki.femt.2007.02.011
    [2] F. Liu, S. J. Zou, H. F. Xu, Research on spectrum of nonuniformly sampled signal in fractional Fourier domain, J. Nav. Aviat. Univ., 25 (2010), 15–18. https://doi.org/10.3969/j.issn.1673-1522.2010.01.004 doi: 10.3969/j.issn.1673-1522.2010.01.004
    [3] A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, et al., Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional Fourier transform, AIMS Mathematics, 7 (2022), 1791–1810. https://doi.org/10.3934/math.2022103
    [4] S. Maksimović, S. Atanasova, Z. D. Mitrović, S. Haque, N. Mlaiki, Abelian and Tauberian results for the fractional Fourier cosine (sine) transform, AIMS Mathematics, 9 (2024), 12225–12238. https://doi.org/10.3934/math.2024597 doi: 10.3934/math.2024597
    [5] X. G. Xia, Discrete Chirp-Fourier transform and its application to Chirp rate estimation, IEEE Trans. Signal Process., 48 (2000), 3122–3133. https://doi.org/10.1109/78.875469 doi: 10.1109/78.875469
    [6] P. Y. Fan, X. G. Xia, Two modified discrete Chirp-Fourier transform schemes, Sci. China, 44 (2001), 329–341. https://doi.org/10.1007/BF02714736 doi: 10.1007/BF02714736
    [7] Y. Guo, L. D. Yang, Chirp-Fourier transform for quadratic phase interference fringe analysis: Principles, method and application, Opt. Lasers Eng., 133 (2020), 329–340. https://doi.org/10.1016/j.optlaseng.2020.106145
    [8] Y. Zong, Y. N. Sun, Q. Feng, Y. N. Zhang, Segmented Chirp-Fourier transform fast algorithm, J. Yangzhou Univ. Nat. Sci. Ed., 26 (2023), 43–49. https://doi.org/10.19411/j.1007-824x.2023.03.008 doi: 10.19411/j.1007-824x.2023.03.008
    [9] Y. N. Sun, B. Z. Li, R. Tao, Research progress on discretization of linear canonical transform, Opto Electron. Eng., 45 (2018), 170738. https://doi.org/10.15918/j.jbit1004-0579.2021.036 doi: 10.15918/j.jbit1004-0579.2021.036
    [10] Y. N. Sun, B. Z. Li. Segmented fast linear canonical transform, J. Opt. Soc. Am. A, 35 (2018), 1346–2455. https://doi.org/10.1364/JOSAA.35.001346 doi: 10.1364/JOSAA.35.001346
    [11] Y. N. Sun, B. Z. Li, Sliding discrete linear canonical transform, IEEE Trans. Signal Process., 66 (2018), 4553–4563. https://doi.org/10.1109/TSP.2018.2855658 doi: 10.1109/TSP.2018.2855658
    [12] Y. N. Sun, B. Z. Li, Digital computation of linear canonical transform for local spectra with flexible resolution ability, Sci. China Inf. Sci., 62 (2019), 049301. https://doi.org/10.1007/s11432-018-9585-1 doi: 10.1007/s11432-018-9585-1
    [13] D. S. Alexiadis, G. D. Sergiadis, Estimation of multiple accelerated motions using Chirp-Fourier transform and clustering, IEEE Trans. Image Process., 16 (2006), 142–152. https://doi.org/10.1109/TIP.2006.884941 doi: 10.1109/TIP.2006.884941
    [14] S. S. Gorthi, P. Rastogi, Estimation of phase derivatives using discrete chirp-Fourier-transform-based method, Opt. Lett., 34 (2009), 2396–2398. https://doi.org/10.1364/OL.34.002396 doi: 10.1364/OL.34.002396
    [15] X. Huang, S. Y. Tang, L. R. Zhang, S. Y. Li, Ground-based radar detection for high-speed maneuvering target via fast discrete Chirp-Fourier transform, IEEE Access, 7 (2019), 12097–12113. https://doi.org/10.1109/ACCESS.2019.2892505 doi: 10.1109/ACCESS.2019.2892505
    [16] C. Z. Wu, B. X. Chen, A recognition algorithm of VGPO jamming based on discrete Chirp-Fourier transform, EURASIP J. Adv. Signal Process., 1 (2020), 1110–1120. https://doi.org/10.1186/s13634-020-00694-3 doi: 10.1186/s13634-020-00694-3
    [17] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series and products, J. Lubrication Tech., 98 (1976), 479. https://doi.org/10.1115/1.3452897
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(495) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog