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Abstract: The Chirp-Fourier transform is one of the most important tools of the modern signal 

processing. It has been widely used in the fields of ultrasound imaging, parameter estimation, and so 

on. The key to its application lies in the sampling and fast algorithms. In practical applications, 

nonuniform sampling can be caused by sampling equipment and other reasons. For the nonuniform 

sampling, we utilized function approximation and interpolation theory to construct different 

approximation forms of Chirp-Fourier transform kernel function, and proposed three fast nonuniform 

Chirp-Fourier transform algorithms. By analyzing the approximation error and the computational 

complexity of these algorithms, the effectiveness of the proposed algorithms was proved. 
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1. Introduction 

The majority of digital signal processing theories currently are based on the uniform, ideal 

sampling signal model. With the development of science and technology, the range of processed 

signals has become very broad. The digital signals obtained in practical applications are generally 

nonuniform and nonideal signal sampling sequences. For example, in the process of radar signal 

acquisition, geographic data acquisition, and medical image signal acquisition, due to the presence of 

certain interference factors, it is not easy or impossible to obtain completely uniformly sampled 

signals. Meanwhile, in practical applications, due to the influence of signal receiving equipment and 

external interference factors, the sampling points of the obtained signal may not necessarily be the 

sampling points of the original signal. Therefore, nonuniform sampling has become one of the 
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important hotspots in signal processing [1,2]. The Fourier transform (FT), which is very important in 

the Fourier analysis theory system, is the basis for the traditional signal processing. It has good 

performance in handling stationary signals. However, it has significant limitations to process 

nonstationary using FT. The Chirp signal is a common nonstationary signal. Therefore, numerous 

novel mathematical techniques, including the fractional Fourier transform (FrFT) [2–4], the 

Chirp-Fourier transform (CFT) [5–8], and the linear canonical transform (LCT) [9–12], have been 

proposed to process nonstationary signal. Among them, since the CFT has good mathematical 

qualities and fast algorithms, it is frequently used in nonstationary signal processing. 

The application of the CFT relies on its discretization and fast algorithms. Discrete 

Chirp-Fourier transform (DCFT) was first proposed by Xia in 2000 [5]. However, this method 

requires that the number of sampling points is prime, and the parameters of frequency modulation 

must be integers or approximate integers, which has significant limitations in practical applications. 

Fan et al. derived modified DCFT (modified Chirp-Fourier transform, MDCFT) to improve the 

aforementioned limitations [6]. On the basis of these, Guo Yong et al. [7] gave a fast method based 

on CFT for estimating the parameters of Newton's ring. The segmented CFT fast algorithm was 

proposed by Zong Ying et al. in 2023 [8]. Simulation results demonstrate that the suggested 

algorithm can realize the fast computing of the local spectrum. Most of the existing CFT algorithms 

are based on the uniform sampling. For the nonuniform sampling, the above algorithms can’t achieve 

good results. It is important to consider the nonuniform sampling associated with the CFT. 

Meanwhile there are fewer researches on fast algorithms for nonuniform CFT currently. In order to 

promote the CFT to be better applied in various fields, we will propose the nonuniform fast 

Chirp-Fourier transform (NUCFT) algorithm. 

The rest of the paper is organized as follows: In Section 2, we give definitions of the CFT, 

Chirp-Fourier series, and associated lemmas. The main results are derived in Section 3. Finally, the 

conclusions are presented in Section 4. 

2. Preliminary 

Definition 2.1. The CFT of a continuous signal ( )x t  is defined as [13] 

 ( ) ( )
( )22j ut rt

rX u x t e dt
 − +

−
=  ,                            

 (2.1)
 

where , , .r = −   

When 0,r =  the transform degenerates to the FT, i.e., ( ) ( ) 2 .j ut

rX u x t e dt


−

−
=   

The inverse of the CFT for a continuous signal ( )x t  is defined as 

 ( ) ( )
( )22j ut rt

rx t X u e du
 +

−
=  .                             (2.2) 

By discretizing the time and transform domains, different definitions of the discrete CFT can be 

obtained [7,14,15]. The most commonly used DCFT is the following. 

Definition 2.2. The DCFT of a discrete sequence ( ) ( )x n x n t=   is defined as [16] 

 ( ) ( ) ( )
( )221

0

N j mn rn
N

r r

n

X m X m u x n e
− − +

=

=  = ,                        (2.3) 
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where 0,1, , 1.m N= − t  and u  are the time and frequency domain sampling intervals for time 

t  and transform domain u , respectively. 

The inverse of the DCFT for a discrete sequence ( ) ( )x n x n t=   is defined as 

 ( ) ( )
22 21

0

Nj rn j mn
N N

r

m

x n e X m e
 − 

=

=  .                            (2.4) 

The definition of the Chirp-Fourier series for the signal ( )x t  is obtained as follows. 

 
( )2

,

1
( )

i kt rt

r k t e
T


+

= .                               (2.5) 

Due to 

 

2 ' 2

'

'

/2
( ) ( )

, , /2

/2
( )

/2

'

'

1
( ( ), ( ))

1

0, ,

1, .

T
i kt rt i k t rt

r k r k T

T
i k k t

T

t t e e dt
T

e dt
T

k k

k k

  − + +

−

− −

−

= 

=

 
= 

=





                     

 (2.6) 

The sequence  , 1 ,0 ,1, ( ), ( ), ( ),r r rt t t  −  is orthogonal in the interval [ / 2, / 2]T T− . Since the 

CFS only employs finite-length functions and this basis function is an FM function, the CFS of a 

finite-length signal ( )x t  is 

 ,x( ) ( )k r k

k

t c t


=−

=  ,                                (2.7) 

where the coefficient of the CFS is 
2/2

( )

/2

1
c ( ) .

T
i kt rt

k
T

x t e dt
T

− +

−
=   

The pertinent formulas that have been applied to derive the NUCFT are given as the following. 

Lemma 2.1. For any real ,c  

 
2

sin( ).icxe dx c
c






−
=

                              
 (2.8) 

Lemma 2.2. For any integer ,k  

 
1, 0,1

0, .2

ikx
k

e dx
else



 −

=
= 



                            

 (2.9) 

Lemma 2.3. [17] For any real 0b   and complex ,z  

 
2 2 /4 .bx zx z be e dx e

b


−

−
 = 

                          
 (2.10) 

Lemma 2.4. [17] For any real 0b   and 0,a   
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2

2

.
2

ba
bx

a

e
e dx

ba

−


−                                   (2.11) 

In the next section, the main results will be derived based on the above facts. 

3. Main results 

3.1. Exact statement of the problems 

In the remainder of this paper, we will operate under the following assumptions. 

(1) 0{ , , }N  =  and 0 1{ , , }Nx x x −=  are finite sequences of real numbers. 

(2) [ / 2, / 2 1]k N N  − − , for 0, , 1k N= − . 

(3) [ , ]ix   − , for 0, , 1j N= − . 

(4) 0 1{ , , },N   −= /2 /2 1{ , , },N Nf f f− −= /2 /2 1{ , , },N N  − −= 0 1{ , , },Ng g g −=

0 1{ , , }N   −= , and 0 1{ , , }Nh h h −=  are finite sequences of complex numbers. 

We will derive three types of NUCFT regarding the sampling uniformity in the time domain and 

transformation domain. The description of the three problems is presented. 

Problem 1: NUCFT(NUCFT-I): Uniform samples and non-integer frequencies: 

We consider that given  , to find ( )f F = : 

 
22 21 ( ( ) )

0

( )
k

j jN i w r
N N

j j k

k

f F e
 

 
−  +

=

= =  ,                         (3.1) 

where / 2, , / 2 1j N N= − − . 

Problem 2: NUCFT(NUCFT-II): Nonuniform samples and integer frequencies: 

We consider that given  , to find ( )g G = : 

 
2

/2 1
( )

/2

( ) j j

N
i kx rx

j j k

k N

g G e 
−

+

=−

= =  ,                          (3.2) 

where 0, , 1j N= − . 

Problem 3: NUCFT(NUCFT-III): Nonuniform samples and non-integer frequencies: 

We consider that given  , to find ( )h H = : 

 
2( )

1

0

( )
i w x rxk j j

N

j j k

k

h H e 
+

−

=

= =  .                           (3.3) 

The NUCFT algorithms for the above three problems are based on the following principal steps. 

Any function 
2( )i cx rxe +

 can be represented on any finite interval on the real line using a small number 

of the terms of 
2 2( )bx i kx rxe e− +

, and this number of the terms of q  is independent of the value c . For 

the efficient calculation (2.12)–(2.14), we approximate each 
2( )mi c x rx

e
+

 in terms of q -term CFS, and 

approximate the value of a CFS at each nx  in terms of values at the nearest q  uniformly-spaced 

nodes. 
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3.2. Derivation of algorithms 

3.2.1. Relevant facts from approximation theory 

The main tool of this paper is to conduct a detailed analysis of CFS of :[ , ] C  − →  given 

by the formula 

 
2 2( )( ) bx i cx rxx e e − +=  ,                               (3.4) 

where 
1

2
b   and c  are any real. We present this analysis in the lemmas and theorems of this 

subsection. 

Lemma 3.1. For any real 
1

,
2

b c  and any integer ,k  

 
2 2 2( )

2

1
2 cos(( ) ) 2 (1 ).bx b i c k x be c k x dx e e dx e


 

 





− − − −

−
− +    + 

             
 (3.5) 

Proof. Based on Lemma 2.4, we have 

 

2 2

2 2

2

( )

( )

2

2 cos(( ) )

2

1
2 ( 1).

bx b i c k x

bx b i c k x

b

e c k x dx e e dx

e dx e e dx

e




 




 





− − −

−


− − −

−

−

− + 

 + 

 +

 

 

                    

 (3.6) 

□. 

Lemma 3.2. For any real 
1

,
2

b c
 
and any integer ,k  

 

2

2 2 ( )

2 2

8 1
2 cos(( ) ) (1 ).

( )

b
bx b i c k x b e

e c k x dx e e dx
c k






 





−


− − −

−
− +    +

− 
            

 (3.7) 

Proof. 

 

2

2

2 2

2 cos(( ) )

2
sin(( ) )

2 4
sin(( ) ) sin(( ) ) .

bx

bx

b bx

e c k x dx

e d c k x
c k

b
e c k xe c k x dx

c k c k











−


−


− −

−

= −
−

= − − + −
− −






               

 (3.8) 

Also, 
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2

2

2

( )

( ) ( )[ ]
( )

2
sin(( ) ).

b i c k x

b
i c k i c k

b

e e dx

e
e e

i c k

e
c k

c k







 





− −

−

−
− − −

−



= −
−

= −
−



                           

 (3.9) 

Due to (3.8) and (3.9), we have 

 

2

2

2

2 2 2

2

2

2 2

2
2 cos(( ) ) sin(( ) )

4
sin(( ) )

4
( 2 )

( )

8 1
(1 ).

( )

b
bx

bx

b bx bx

b

e
e c k x dx c k

c k

b
xe c k x dx

c k

b
e e dx x bxe dx

c k

b e

c k









 











−


−


−

 
− − −

−

− + −
−

= −
−

 + + 
−

  +
−





 

                  

 (3.10) 

□. 

Theorem 3.3. The function 
2 2( )( ) bx i cx rxx e e − += ( ( , ))x   −  can be approximated by the 

Chirp-Fourier series, and the approximation error can be obtained by the following inequality: 

 
2 2( ) 70

( ) (4 ),
9

i kx rx b

k

k

x e e b 
+

+ −

=−

−    +
                     

 (3.11) 

where 
1

2
b   and c  are constants 

2( ) /41
, , ,

2

c k b

k e k
b




− −= = − + . 

Proof. For ( , ),x   −  

 
2( )( ) ,i kx rx

k

k

x e 


+

=−

= 
                            

 (3.12) 

The k  is the k th Chirp-Fourier coefficient for ,  
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2

2 2 2

2 2 2

2

( )

( ) ( ) ( )

( ) /4 ( ) ( )

1
( )

2

1
[ ( ) ( ) ( ) ]

2

1
( )

2

1
cos(( ) ) ,

i kx rx

k

i kx rx kx rx i kx rx

c k b bx i c k x bx i c k x

bx

k

x e dx

x e dx x e dx x e dx

e e dx e dx
b

e c k x dx















 


  









− +

−

+ − +
− + − + − +

− −


− − − + − − + −




−

=

=  − −

=  + −

= − −



  

 


          

 (3.13) 

where 
2( ) /41

, , , .
2

c k b

k e k
b




− −= = − +  

Due to (3.13), we have 

 

2

2 2 2( ) ( )

2

1
(1 )

2

b
i cx rx i kx rx b

k k

e
e e dx e







 

 

−
+ − + −

−
− −   + ,               (3.14) 

 

2 2

2 2( ) ( )

2 2

4 1
(1 )

2 ( )

b b
i cx rx i kx rx

k k

e be
e e dx

c k

 



 

 

− −
+ − +

−
− −   +

− .               (3.15) 

Due to (3.13), (3.14), and (3.15), we obtain 

 

2 2 2

2 2 2 2

2

2 2 2

2

2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
, 3

( )

( )
2

4 1 1
(1 ) (1

( )

i kx rx b i cx rx

k

k

i kx rx i kx rx b i cx rx

k k

k k

b
i kx rx i cx rx i kx rx

k k

k

b
b

k c k

x e e e

e e e e

e
e e e

be
e

c k













 

 

 




+
+ − +

=−

+ +
+ + − +

=− =−

−+
+ + − +

−
=−

−
−

− 

−  − 

=  −  − 

=  − − 

 + + +
−



 

 



2 2

2
, 3

2
3

)

9 1 10
4 2 6 .

8 9

k c k

b b

k

be e
k

 

− 


− −

=

   + 




                

 (3.16) 

Owing to 

 
2 23

3

1 1 1 1 4

9 9 3 9k

dx

k x

 

=

 + = + =  ,                          (3.17) 

and substituting (3.17) into (3.16), we have 

 
2 2 2 2( ) ( ) 60

( ) (4 ).
9

i kx rx b i cx rx b

k

k

x e e e e b  
+

+ − + −

=−

−  −    +
               

 (3.18) 

Thus, combined with (3.18), we obtain 
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2

2 2 2 2 2

2

( )

( ) ( ) ( )

( )

( )

70
(4 ).

9

i kx rx

k

k

i kx rx b i cx rx b i cx rx

k

k

b

x e

x e e e e e

e b

 



 

 

+
+

=−

+
+ − + − +

=−

−

− 

 −  −  + 

 +





               

 (3.19) 

□. 

According to Theorem 3.3，the functions 
2 2( )bx i cx rxe e− +

 can be approximated by the CFS whose 

coefficients are given analytically, and the error of the approximation decreases exponentially as b  

increases. The coefficients k  have a peak at [ ]k c= ([#]  is the nearest integer to # ), and decay 

exponentially as k → . We keep only the 1q +  largest coefficients, where the integer q  is 

chosen such as 

 4 ,q b                                     (3.20) 

and the following inequality is succeeded to 

 
2 2( /2) /4 .q b be e − −                               (3.21) 

Theorem 3.4 is presented, which contains the truncation error of CFS of ( )x . Additionally, the 

functional approximation of 
2( )i cx rxe +

 is further derived. 

Theorem 3.4. The function 
2 2( )( ) ( ( , ))bx i cx rxx e e x  − +=  −  can be approximated by the 1q +  

term Chirp-Fourier series, and the truncation error can be obtained by the following inequality: 

 
2 2

[ ] /2 1
( )

[ ] /2

( ) (4 9),
c q

i kx rx b

k

k c q

x e e b 
+ −

+ −

= −

−   +
                    

 (3.22) 

where 
1

2
b 

 
and c  are constants and q  is an even integer such that 4 .q b  

2( ) /41
, , ,

2

c k b

k e k
b




− −= = − + . 

Proof. 

 

2

2 2 2

[ ] /2 1
( )

[ ] /2

( ) ( ) ( )

[ ] /2 1 [ ] /2

( )

( ) .

c q
i kx rx

k

k c q

i kx rx i kx rx i kx rx

k k k

k k c q k c q

x e

x e e e

 

   

+ −
+

= −

+
+ + +

=− = + − = −

−

 − + +



  
           

 (3.23) 

Owing to 

 

2

2 2
/4

( ) ( ) /4

[ ] /2 1 [ ] /2 /2

1

2 2

k b
i kx rx c k b

k

k c q k c q k q

e
e e

b


 

− 
+ − −

= + − = + =

    ,               (3.24) 
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2 2

2
( ) /4 /4[ ] /2 1

( )

[ ] /2 /22 2

c k b k bc q
i kx rx

k

k c q k k q

e e
e

b b


 

− − −− − 
+

= − =− =

    .                  (3.25) 

Due to (3.24), (3.25), and Lemma 2.4, we have 

 
2 2 2 2/4 ( /2) 4 /4 ( /2) /4

/2
/2

4
(1 )

2 / 2

k b q b x b q b

q
k q

b
e e e dx e

q

 
− − − −

=

 +  +  ,               (3.26) 

and the combination of (3.20), (3.21), and (3.26), we obtain 

 
2 2/4

/2

1
(1 ).k b b

k q

e e 




− −

=

 +
                           

 (3.27) 

Substituting (3.27) into (3.24) and (3.25), we have 

 

2 2

2

2

( ) ( )

[ ] /2 1 [ ] /2

2 1 10
(1 ) ,

92

i kx rx i kx rx

k k

k c q k c q

b
b

e e

e
e




 



+ +

= + − = −

−
−

+

 +  

 

                     

 (3.28) 

Substituting (3.19) and (3.28) into (3.23), we obtain 

 

2

2

2

[ ] /2 1
( )

[ ] /2

( )

70 10
(4 )

9 9

(4 9).

c q
i kx rx

k

k c q

b

b

x e

e b

e b





 
+ −

+

= −

−

−

−

 + +

 +



                           

 (3.29) 

Due to (3.22), we have 

 
2 2 2 2 2 2 2 2

[ ] /2 1
( ) ( ) /

[ ] /2

(4 9) (4 9)
c q

i cx rx bx i kx rx bx b b m b

k

k c q

e e e e e b e e b  
+ −

+ + − −

= −

−     +   + .      (3.30) 

Corollary 3.5. For any integer 2m  , the conditions of Theorem 3.4 are satisfied, and we have 

 
2 2 2 2 2 2

[ ] /2 1
( ) ( ) /

[ ] /2

(4 9)
c q

i cx rx bx i kx rx b m b

k

k c q

e e e e e b 
+ −

+ + −

= −

−     + ,               (3.31) 

where [ , ]x
m m

 
 − . 

□. 

By extending further [ , ]x
m m

 
 −  to [ , ]x d d −  in the Corollary 3.5, we obtain the 

following theorem: 

Theorem 3.6. Let 
1

, , 0
2

b c d   be real numbers and 2, 4m q b   be integers. Then, for any 

[ , ],x d d −  we have 
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2 2 2 2 2

[ / ] /2 1
( ) ( / ) ' ( ( / ) ( / ) ) (1 1/ )

[ / ] /2

(4 9).
cmd q

i cx rx b x md i k x md r x md b m

k

k cmd q

e e e e b


   




+ −

+ + − −

= −

−   +
        

 (3.32) 

where 

2( ) /4
' 1

2

mdc
k b

k e
b




− −

= . 

□. 

3.2.2. Implementation of algorithms 

We provide detailed algorithm descriptions in this subsection. 

a) Problem 1: NUCFT(NUCFT-I): Uniform samples and non-integer frequencies 

Setting , ,j kd c x k j = = = +
 

in Theorem 3.6, we obtain that 

 
2 22

/2 1
( ) (( )( / ) ( / ) )( / )

/2

k k

q
i w x rx i j x m r x mb x m

jk

j q

e e P e
 

−
+ + +

=−

−    ,                  (3.33) 

where ,m Z
2 2(1 1/ )0, , 1, / 2, , / 2 1, [ , ], (4 9),b mk N j q q x e b   − −= − = − −  − =  +  and jkP  is 

defined as follows: 

 
2( ) /41

2

mdc
k b

jkP e
b





− −

= .                            (3.34) 

We will denote by k  the nearest integer to .km  

Setting 
2

, ,
l

x l Z
N


=   we have 

 

2 2

2

2 2 2/2 11 ( ) (( )( ) ( ) )

0 /2

2 2/2 11( )( ) ( )( )

0 /2

,

k

k

l l lqN b i j r
mN mN mN

j k jk

k j q

l lqNir b i j
mN mN

k jk

k j q

f e P e

e P e

  


 






−− + +

= =−

−−+ +

= =−

=   

=   

 

 
                  

 (3.35) 

so that 

 
, , k

l k jk

j k j l

P


 
+ =

=  .                              (3.36) 

For , ,k  = −  and by { }jT , a set of complex numbers defined by the formula 

 

2/2 1 ( )

/2

lmN ik
mN

j k

k mN

T e



−

=−

=  ,                             (3.37) 

for / 2, , / 2 1.j mN mN= − −  

Furthermore, jf  will be denoted as 
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22

( )( )
l

ir b
mN

j jf e T


+

=  .                               (3.38) 

Combining (3.33)–(3.38), we obtain 

 

1

0

N

j j k

k

f f  
−

=

−   ,                               (3.39) 

where / 2, , / 2 1,{ ( ) }.j jj N N f F = − − =  

The implementation of NUCFT-I is presented as the following: 

Step1: Input parameter 0 1 1 0 1 1{ , , , },{ , , , },N N     − − and then choose precision ,b  and 

[4 ];q b=  

Step2: Compute [ ], 0,1,2, , 1,k km k N = = −  and then calculate jkP  and l  according 

to (3.34) and (3.36), respectively; 

Step3: According to (3.37), the uniformly sampled Fourier series jT  of k  in [ , ] −  is 

calculated using an inverse fast Fouier transform of length , / 2, , / 2 1.mN j mN mN= − −  

Step4: Select the { }jT  value at / 2, , / 2 1,j N N= − −
 
and then get approximate values jf  

by calculating 
22

( )( )

.
l

ir b
mN

j jf e T


+

=   

b) Problem 2: NUCFT(NUCFT-II): Nonuniform samples and integer frequencies 

Setting / 2, ,j jd N c x k k= = = +
 
in Theorem 3.6, we have 

 
2

/2 1
( )2 / )(2 / )

/2

j j

q
ix n in k mNb n mN

jk

l q

e e Q e
  

−
+

=−

−    ,                    (3.40) 

where
2 2(1 1/ ), 0, , 1, [ / 2, / 2], (4 9),b mm Z j N k N N e b − − = −  − =  +  and jkQ  is defined as 

follows: 

 
2( ( )) /4

2
1

2

j
j

x mN
k b

jkQ e
b






− − +

=  .                          (3.41) 

We will denote by jv  the nearest integer to / 2 .jx mN   

Setting , ,k n n Z =   we have 

 

2
/2 1/2 1

( )2 /(2 / )

/2 /2

/2 1 /2 1
( )2 /

/2 /2

,

j

j

qN
in k mNb k mN

j k jk

k N l q

q N
in k mN

k jk

l q k N

g e Q e

e Q

 

 





−−
+

=− =−

− −
+

=− =−

=   

=  

 

 
                  

 (3.42) 

so that 

 
2(2 / )b k mN

k ku e =  ,                              (3.43) 
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where / 2, , / 2 1j N N= − − . 
For / 2, , / 2n N N= − , a set of complex numbers{ }lU  is defined by the formula 

 

/2 1
2 /

/2

N
i nl mN

l k

k N

U u e 
−

=−

=  ,                             (3.44) 

where / 2, , / 2 1.l mN mN= − −  Furthermore, jg  will be denoted by the following formula: 

 
2(2 / )

j

b j mN

j v lg e U

+=  .                               (3.45) 

Combining (3.40)–(3.45), we obtain 

 

1

0

N

j j k

k

g g  
−

=

−   ,                             (3.46) 

where 0, , 1,{ ( ) }.j jj N g G = − =  

The implementation of NUCFT-II is given as the following: 

Step1: Input parameter /2 /2 1 0 1 1{ , , },{ , , , },N N Nx x x − − −  and then choose precision ,b  
and [4 ];q b=  

Step2: Compute [ / 2 ], 0, , 1,j jv x mN j N= = −  and then calculate jkQ  and k  according 

to (3.41) and (3.43), respectively; 

Step3: According to (3.44), the uniformly sampled FT lU  of ku  in [ / 2, / 2]N N−  is 

calculated using an inverse FFT of length , / 2, , / 2 1.mN l mN mN= − −  

Step4: Select the { }lU  value at 0, , 1,j N= −  and then get approximate values jg  by 

calculating 
2(2 / ) .

j

b j mN

j v lg e U

+=   

c) Problem 3: NUCFT(NUCFT-III): Nonuniform samples and non-integer frequencies 

Setting / 2, / , ,j jd N c t m k v l x n= = = + =
 
in Theorem 3.6, we have 

 
2

2/2 1
( ) )/ (2 / )

/2

j
j

nq
i lix n m b n mN mN

jl

l q

e e R e



 

−
+

=−

−    ,                     (3.47) 

where
2 2(1 1/ ), 0, , 1, [ / 2, / 2], (4 9),b mm Z j N k N N e b − − = −  − =  +  and jlR  is defined as 

follows: 

 
2( /2 ( )) /41

2

j jt mN l b

jlR e
b

 



− − +
=  .                         (3.48) 

We will denote by j  the nearest integer to / 2 .jx N   

Due to (3.3) and (3.35), we obtain 

 
2 2 2 2

/2 1 /2 11
( )( / ) (2 / ) 2 /

/2 0 /2

j

q qN
ir b x m k m N ikl m N

j jl k jk

l q k j q

h e R P e e 
− −−

+

=− = =−

=        ,             (3.49) 
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so that 

 
, , k

j k jl

j k j l

v R



+ =

=  .                              (3.50) 

For / 2, , / 2k N N= − and by { }lV , a set of complex numbers is defined by the formula 

 
2 2 2

/2 1
(2 / ) 2 /

/2

mN
k m N ikl m N

l k

k mN

V v e e 
−

=−

=   ,                       

 (3.51) 

where 
2 2/ 2, , / 2 1.l m N m N= − −  

Furthermore, the jh  will be denoted by the following formula: 

 
2

/2 1
( )( / )

/2

j

j

q
i b x m

j jl l

l q

h e R V




−
+

+

=−

=   .                         (3.52) 

Combining (3.47)–(3.52), we have 

 

1

0

N

j j k

k

h h  
−

=

−   ,                               (3.53) 

where 0, , 1,{ ( ) },j jj N h H = − =
 
and 

 
2 2(1 2/ )2 (4 9).b me b − −=  +                             (3.54) 

The implementation of NUCFT-III is presented as the following: 

Step1: Input parameter
 1 10 0 1 ,{ , {, }, , , }N N   − −  and then choose precision ,b  and

[4 ];q b=  

Step2: Compute [ / 2 ], 0, , 1,j jx N j N = = −  and then calculate jlR  and jv  according to 

(3.48) and (3.50), respectively; 

Step3: According to (3.51), the uniformly sampled Fourier series lV  of kv  in [ / 2, / 2]N N−  

is calculated using an inverse FFT of length 
2 2 2, / 2, , / 2 1.m N l m N m N= − −

 

Step4: Select the { }lV  value at 0, , 1,j N= −  and then get approximate values jh  by 

calculating 
2 2

/2 1
( / ) ( / )

/2

.j j

j

q
b x m i x m

j jl l

l q

h e e R V




−

+

=−

=     

3.3. Computation analysis of algorithms 

Tables 1–3 display the comparison of the NUCFT computations with the direct computation for 

the three instances of uniform time but nonuniform transform domain, uniform transform domain but 

nonuniform time, and nonuniform time and transform domain, respectively. 
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Table 1. Computational analysis of NUCFT-I. 

 Multiplication Addition 

Direct 24N  22N  

NUCFT-I 4 0.5 log 4qN mN mN N+ +  2 log 2qN mN mN N+ +  

Computational savings 24 4 0.5 log 4N qN mN mN N− − −  22 2 log 2N qN mN mN N− − −  

Table 2. Computational analysis of NUCFT-II. 

 Multiplication Addition 

Direct 24N  22N  

NUCFT-II 4 0.5 log 4qN mN mN N+ +  2 log 2qN mN mN N+ +  

Computational savings 24 4 0.5 log 4N qN mN mN N− − −  22 2 log 2N qN mN mN N− − −  

Table 3. Computational analysis of NUCFT-III. 

 Multiplication Addition 

Direct 24N  22N  

NUCFT-III 2 24 0.5 log 4qN m N m N N+ +  2 22 log 2qN m N m N N+ +  

Computational savings 2 2 24 4 0.5 log 4N qN m N m N N− − −  2 2 22 2 log 2N qN m N m N N− − −  

The results show that the computational accuracy of the three NUCFT is similar, and the 

proposed algorithms have lower computational than direct calculation under the condition of 

guaranteeing the computational accuracy. 

4. Conclusions 

In this paper, we have described three algorithms for computing DCFT for non-equispaced data, 

which is based on the interpolation formulae to transform function values from uniform to 

nonuniform points. The computational complexity of each algorithm is O(NlogN Nlog(1/ ε)),+  

where N  is the data length and   is the computational accuracy. It shows that the derived 

approach is effective for computing nonuniform DCFT. The proposed algorithms can be viewed as 

generalizations of DCFT, and will have a broad range of applications in many branches of 

mathematics, science, and engineering. One of the specific applications is the inverse synthetic 

aperture radar (ISAR) imaging. In the signal extraction of ISAR imaging processing, the nonuniform 

rotation of the target can lead to nonuniformity of the processed data and also result in phase errors 

in the extracted signal. However, nonuniform CFT can process nonuniform data according to actual 

needs, so the algorithm proposed in this article can be used for signal extraction in ISAR to eliminate 

phase errors caused by nonuniform rotation. In future research, we will further investigate the 

application of the proposed algorithm. 
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