Research article

Barbashin type characterizations for nonuniform h-dichotomy of evolution families

  • Received: 10 July 2023 Revised: 04 September 2023 Accepted: 05 September 2023 Published: 14 September 2023
  • MSC : 34D05, 34D09

  • The aim of this paper is to give some Barbashin type characterizations for the nonuniform h-dichotomy of reversible evolution families in Banach spaces. Two necessary and sufficient conditions for the nonuniform h-dichotomy are pointed out using some important sets of growth functions. Additionally, as particular cases, we obtain a Barbashin type characterization for nonuniform exponential dichotomy and a necessary and sufficient condition for the nonuniform polynomial dichotomy.

    Citation: Tian Yue. Barbashin type characterizations for nonuniform h-dichotomy of evolution families[J]. AIMS Mathematics, 2023, 8(11): 26357-26371. doi: 10.3934/math.20231345

    Related Papers:

  • The aim of this paper is to give some Barbashin type characterizations for the nonuniform h-dichotomy of reversible evolution families in Banach spaces. Two necessary and sufficient conditions for the nonuniform h-dichotomy are pointed out using some important sets of growth functions. Additionally, as particular cases, we obtain a Barbashin type characterization for nonuniform exponential dichotomy and a necessary and sufficient condition for the nonuniform polynomial dichotomy.



    加载中


    [1] E. A. Barbashin, Introduction to the theory of stability, Wolters-Noordhoff, 1970.
    [2] P. V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal., 90 (2011), 1897–1907. https://doi.org/10.1080/00036811.2010.534728 doi: 10.1080/00036811.2010.534728
    [3] P. V. Hai, A generalization for theorems of Datko and Barbashin type, J. Funct. Spaces, 2015 (2015), 517348. https://doi.org/10.1155/2015/517348 doi: 10.1155/2015/517348
    [4] P. V. Hai, On the polynomial stability of evolution families, Appl. Anal., 95 (2016), 1239–1255. https://doi.org/10.1080/00036811.2015.1058364 doi: 10.1080/00036811.2015.1058364
    [5] C. Preda, P. Preda, An extension of a theorem of E. A. Barbashin to the dichotomy of abstract evolution operators, Bull. Belg. Math. Soc. Simon Stevin, 17 (2010), 705–715. https://doi.org/10.36045/bbms/1290608196 doi: 10.36045/bbms/1290608196
    [6] D. Dragičević, Barbashin-type conditions for exponential stability of linear cocycles, Monatsh. Math., 192 (2020), 813–826. https://doi.org/10.1007/s00605-020-01438-z doi: 10.1007/s00605-020-01438-z
    [7] M. Megan, R. Boruga, Barbashin conditions for uniform instability of evolution operators, Stud. Univ. Babeş-Bolyai Math., 66 (2021), 297–305. http://doi.org/10.24193/subbmath.2021.2.06 doi: 10.24193/subbmath.2021.2.06
    [8] R. Boruga, M. Megan, D. M. M. Toth, Integral characterizations for uniform stability with growth rates in Banach spaces, Axioms, 10 (2021), 235. https://doi.org/10.3390/axioms10030235 doi: 10.3390/axioms10030235
    [9] T. Yue, Barbashin type characterizations for the uniform polynomial stability and instability of evolution families, Georgian Math. J., 29 (2022), 953–966. https://doi.org/10.1515/gmj-2022-2188 doi: 10.1515/gmj-2022-2188
    [10] T. Yue, Some Datko and Barbashin type characterizations for the uniform h-instability of evolution families, Glas. Mat., 57 (2022), 265–280. https://doi.org/10.3336/gm.57.2.07 doi: 10.3336/gm.57.2.07
    [11] O. Perron, Die stabilitätsfrage bei differentialgleichungen, Math. Z., 32 (1930), 703–728. https://doi.org/10.1007/BF01194662 doi: 10.1007/BF01194662
    [12] J. L. Massera, J. J. Schäffer, Linear differential equations and function spaces, Academic Press, 1966.
    [13] W. A. Coppel, Dichotomies and stability theory, Springer, 1978.
    [14] J. L. Daleckii, M. G. Krein, Stability of solutions of differential equations in Banach spaces, American Mathematical Society, 1974.
    [15] L. Barreira, C. Valls, Stability of nonautonomous differential equations, Springer, 2008.
    [16] N. Lupa, M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math., 174 (2014), 265–284. https://doi.org/10.1007/s00605-013-0517-y doi: 10.1007/s00605-013-0517-y
    [17] A. J. G. Bento, N. Lupa, M. Megan, C. M. Silva, Integral conditions for nonuniform μ-dichotomy on the half-line, Discrete Contin. Dyn. Syst., 22 (2017), 3063–3077. https://doi.org/10.3934/dcdsb.2017163 doi: 10.3934/dcdsb.2017163
    [18] D. Dragičević, W. Zhang, L. Zhou, Admissibility and nonuniform exponential dichotomies, J. Differ. Equations, 326 (2022), 201–226. https://doi.org/10.1016/j.jde.2022.04.014 doi: 10.1016/j.jde.2022.04.014
    [19] R. Boruga, M. Megan, On some characterizations for uniform dichotomy of evolution operators in Banach spaces, Mathematics, 10 (2022), 3704. https://doi.org/10.3390/math10193704 doi: 10.3390/math10193704
    [20] M. Megan, B. Sasu, A. L. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integr. Equations Oper. Theory, 44 (2002), 71–78. https://doi.org/10.1007/BF01197861 doi: 10.1007/BF01197861
    [21] A. L. Sasu, M. G. Babuţia, B. Sasu, Admissibility and nonuniform exponential dichotomy on the half-line, Bull. Sci. Math., 137 (2013), 466–484. https://doi.org/10.1016/j.bulsci.2012.11.002 doi: 10.1016/j.bulsci.2012.11.002
    [22] A. J. G. Bento, C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257 (2009), 122–148. https://doi.org/10.1016/j.jfa.2009.01.032 doi: 10.1016/j.jfa.2009.01.032
    [23] L. Barreira, C. Valls, Polynomial growth rates, Nonlinear Anal., 71 (2009), 5208–5219. https://doi.org/10.1016/j.na.2009.04.005 doi: 10.1016/j.na.2009.04.005
    [24] D. Dragičević, Admissibility and nonuniform polynomial dichotomies, Math. Nachr., 293 (2020), 226–243. https://doi.org/10.1002/mana.201800291 doi: 10.1002/mana.201800291
    [25] D. Dragičević, Admissibility and polynomial dichotomies for evolution families, Commun. Pure Appl. Anal., 19 (2020), 1321–1336. https://doi.org/10.3934/cpaa.2020064 doi: 10.3934/cpaa.2020064
    [26] D. Dragičević, A. L. Sasu, B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math., 38 (2022), 663–680. https://doi.org/10.37193/CJM.2022.03.12 doi: 10.37193/CJM.2022.03.12
    [27] R. Boruga, M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math., 37 (2021), 45–51. https://doi.org/10.37193/CJM.2021.01.05 doi: 10.37193/CJM.2021.01.05
    [28] A. Găină, M. Megan, R. Boruga, Nonuniform dichotomy with growth rates of skew-evolution cocycles in Banach spaces, Axioms, 12 (2023), 394. https://doi.org/10.3390/axioms12040394 doi: 10.3390/axioms12040394
    [29] N. Lupa, L. H. Popescu, Admissible Banach function spaces and nonuniform stabilities, Mediterr. J. Math., 17 (2020), 105. https://doi.org/10.1007/s00009-020-01544-0 doi: 10.1007/s00009-020-01544-0
    [30] M. Pinto, Asymptotic integration of a system resulting from the perturbation of an h-system, J. Math. Anal. Appl., 131 (1988), 194–216. https://doi.org/10.1016/0022-247X(88)90200-4 doi: 10.1016/0022-247X(88)90200-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1037) PDF downloads(71) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog