This paper aims to consider the extended Perron complements for the collection of M-matrices. We first exhibit the connection between the extended Perron complements of M-matrices and nonnegative matrices. Moreover, we present some common inequalities involving extended Perron complements, Schur complements, and principal submatrices of irreducible M-matrices by utilizing the properties of M-matrices. We also discuss the monotonicity of the extended Perron complements and minimum eigenvalue. For the collection of M-matrices, we demonstrate that all (extended) Perron complements are M-matrices. Especially, we deduce that M-matrices and their Perron complements share the same minimum eigenvalue. Finally, a simple example is presented to illustrate our findings.
Citation: Qin Zhong, Chunyan Zhao. Extended Perron complements of M-matrices[J]. AIMS Mathematics, 2023, 8(11): 26372-26383. doi: 10.3934/math.20231346
This paper aims to consider the extended Perron complements for the collection of M-matrices. We first exhibit the connection between the extended Perron complements of M-matrices and nonnegative matrices. Moreover, we present some common inequalities involving extended Perron complements, Schur complements, and principal submatrices of irreducible M-matrices by utilizing the properties of M-matrices. We also discuss the monotonicity of the extended Perron complements and minimum eigenvalue. For the collection of M-matrices, we demonstrate that all (extended) Perron complements are M-matrices. Especially, we deduce that M-matrices and their Perron complements share the same minimum eigenvalue. Finally, a simple example is presented to illustrate our findings.
[1] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262 |
[2] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1994. https://doi.org/10.1017/CBO9780511840371 |
[3] | R. Bapat, M. Neumann, Inequalities for permanents involving Perron complements, Linear Algebra Appl., 385 (2004), 95–104. https://doi.org/10.1016/S0024-3795(03)00533-0 doi: 10.1016/S0024-3795(03)00533-0 |
[4] | S. M. Fallat, M. Neumann, On Perron complements of totally nonnegative matrices, Linear Algebra Appl., 327 (2001), 85–94. https://doi.org/10.1016/S0024-3795(00)00312-8 doi: 10.1016/S0024-3795(00)00312-8 |
[5] | C. D. Meyer, Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114–115 (1989), 69–94. https://doi.org/10.1016/0024-3795(89)90452-7 doi: 10.1016/0024-3795(89)90452-7 |
[6] | Z. G. Ren, T. Z. Huang, X. Y. Cheng, A note on generalized Perron complements of Z-matrices, Electron. J. Linear Algebra, 15 (2006), 8–13. https://doi.org/10.13001/1081-3810.1217 doi: 10.13001/1081-3810.1217 |
[7] | S. W. Zhou, T. Z. Huang, On Perron complements of inverse ${{N}_{0}}$-matrices, Linear Algebra Appl., 434 (2011), 2081–2088. https://doi.org/10.1016/j.laa.2010.12.004 doi: 10.1016/j.laa.2010.12.004 |
[8] | M. Neumann, Inverses of Perron complements of inverse M-matrices, Linear Algebra Appl., 313 (2000), 163–171. https://doi.org/10.1016/S0024-3795(00)00128-2 doi: 10.1016/S0024-3795(00)00128-2 |
[9] | J. H. Xu, Perron complementation on linear systems involving M-matrices, Asian J. Math. Appl., 1 (2022), 1–10. |
[10] | L. Wang, J. Liu, S. Chu, Properties for the Perron complement of three known subclasses of H-matrices, J. Inequal. Appl., 2015 (2015), 9. https://doi.org/10.1186/s13660-014-0531-1 doi: 10.1186/s13660-014-0531-1 |
[11] | M. Adm, J. Garloff, Total nonnegativity of the extended Perron complement, Linear Algebra Appl., 508 (2016), 214–224. https://doi.org/10.1016/j.laa.2016.07.002 doi: 10.1016/j.laa.2016.07.002 |
[12] | L. Lu, Perron complement and Perron root, Linear Algebra Appl., 341 (2002), 239–248. https://doi.org/10.1016/S0024-3795(01)00378-0 doi: 10.1016/S0024-3795(01)00378-0 |
[13] | A. Björck, Numerical methods for least squares problems, Philadelphia: Society for Industrial and Applied Mathematics, 1996. https://doi.org/10.1137/1.9781611971484 |