Research article

On positive definite solutions of the matrix equation $ X-\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = Q $

  • Received: 07 July 2024 Revised: 19 August 2024 Accepted: 27 August 2024 Published: 02 September 2024
  • MSC : 15A24, 47H10, 65H05

  • In this paper, we used the outstanding properties of the Thompson metric to conclusively demonstrate the existence of a unique positive definite solution for the nonlinear matrix equation $ X-\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = Q $ without any additional assumptions. Furthermore, we designed an iterative algorithm to compute this unique positive definite solution, and derive its corresponding error estimate formula. Additionally, we presented three refined existence intervals for positive definite solutions of this equation. Finally, numerical examples were employed to validate the practicability of our iterative algorithm.

    Citation: Changzhou Li, Chao Yuan, Shiliang Chen. On positive definite solutions of the matrix equation $ X-\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = Q $[J]. AIMS Mathematics, 2024, 9(9): 25532-25544. doi: 10.3934/math.20241247

    Related Papers:

  • In this paper, we used the outstanding properties of the Thompson metric to conclusively demonstrate the existence of a unique positive definite solution for the nonlinear matrix equation $ X-\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = Q $ without any additional assumptions. Furthermore, we designed an iterative algorithm to compute this unique positive definite solution, and derive its corresponding error estimate formula. Additionally, we presented three refined existence intervals for positive definite solutions of this equation. Finally, numerical examples were employed to validate the practicability of our iterative algorithm.



    加载中


    [1] A. Ferrante, B. C. Levy, Hermitian solutions of the equation $X = Q+NX^{-1}N^{*}$, Linear Algebra Appl., 247 (1996), 359–373. https://doi.org/10.1016/0024-3795(95)00121-2 doi: 10.1016/0024-3795(95)00121-2
    [2] C. H. Guo, P. Lancaster, Iterative solution of two matrix equations, Math. Comput., 68 (1999), 1589–1603.
    [3] W. N. Anderson Jr., T. D. Morley, G. E. Trapp, Ladder networks, fixpoints, and the geometric mean, Circuits Syst. Signal Process., 2 (1983), 259–268. https://doi.org/10.1007/BF01599069 doi: 10.1007/BF01599069
    [4] W. L. Green, E. W. Kamen, Stabilizability of linear systems over a commutative normed algebra with applications to spatially-distributed and parameter-dependent systems, SIAM J. Control Optim., 23 (1985), 1–18. https://doi.org/10.1137/0323001 doi: 10.1137/0323001
    [5] W. Pusz, S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys., 8 (1975), 159–170. https://doi.org/10.1016/0034-4877(75)90061-0 doi: 10.1016/0034-4877(75)90061-0
    [6] W. N. Anderson Jr., G. B. Kleindorfer, P. R. Kleindorfer, M. B. Woodroofe, Consistent estimates of the parameters of a linear system, Ann. Math. Statist., 40 (1969), 2064–2075. https://doi.org/10.1214/aoms/1177697286 doi: 10.1214/aoms/1177697286
    [7] D. V. Ouellette, Schur complements and statistics, Linear Algebra Appl., 36 (1981), 187–295. https://doi.org/10.1016/0024-3795(81)90232-9 doi: 10.1016/0024-3795(81)90232-9
    [8] B. L. Buzbee, G. H. Golub, C. W. Nielson, On direct methods for solving Poisson's equations, SIAM J. Numer. Anal., 7 (1970), 627–656. https://doi.org/10.1137/0707049 doi: 10.1137/0707049
    [9] L. A. Sakhnovich, Interpolation theory and its applications, Springer, 1997. https://doi.org/10.1007/978-94-009-0059-2
    [10] X. F. Duan, Q. W. Wang, A. P. Liao, On the matrix equation $X-\sum_{i = 1}^{m}N_{i}^{*}X^{-1}N_{i} = I$ arising in an interpolation problem, Linear Multilinear Algebra, 61 (2013), 1192–1205. https://doi.org/10.1080/03081087.2012.746326 doi: 10.1080/03081087.2012.746326
    [11] P. C. Y. Weng, Solving two generalized nonlinear matrix equations, J. Appl. Math. Comput., 66 (2021), 543–559. https://doi.org/10.1007/s12190-020-01448-y doi: 10.1007/s12190-020-01448-y
    [12] X. Y. Yin, L. Fang, Perturbation analysis for the positive definite solution of the nonlinear matrix equation $ X-\sum_{i = 1}^{m}A_{i}^{\ast}X^{-1}A_{i} = Q $, J. Appl. Math. Comput., 43 (2013), 199–211. https://doi.org/10.1007/s12190-013-0659-z doi: 10.1007/s12190-013-0659-z
    [13] T. Li, J. J. Peng, Z. Y. Peng, Z. G. Tang, Y. S. Zhang, Fixed-point accelerated iterative method to solve nonlinear matrix equation ${X-\sum_{i = 1}^{m}A_{i}^{*}X^{-1}A_{i} = Q}$, Comput. Appl. Math., 41 (2022), 415. https://doi.org/10.1007/s40314-022-02119-3 doi: 10.1007/s40314-022-02119-3
    [14] J. Li, Y. H. Zhang, On the existence of positive definite solutions of a nonlinear matrix equation, Taiwanese J. Math., 18 (2014), 1345–1364. https://doi.org/10.11650/tjm.18.2014.3747 doi: 10.11650/tjm.18.2014.3747
    [15] A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc., 14 (1963), 438–443.
    [16] Y. Lim, Solving the nonlinear matrix equation $X = Q+\sum_{i = 1}^{m}M_{i}X^{\delta_{i}}M_{i}^{\ast}$ via a contraction principle, Linear Algebra Appl., 430 (2009), 1380–1383. https://doi.org/10.1016/j.laa.2008.10.034 doi: 10.1016/j.laa.2008.10.034
    [17] R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc., 75 (1988), 79–118. https://doi.org/10.1090/memo/0391 doi: 10.1090/memo/0391
    [18] H. Lee, Y. Lim, Invariant metrics, contractions and nonlinear matrix equations, Nonlinearity, 21 (2008), 857. https://doi.org/10.1088/0951-7715/21/4/011 doi: 10.1088/0951-7715/21/4/011
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(393) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog